A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks Optical Modeling For Handwriting Recognition

Théodore Bluche, Hermann Ney, Christopher Kermorvant

SLSP'14, Grenoble

October 16, 2014

Outline

Handwriting Recognition with Hybrid NN/HMM

- > Offline Handwriting Recognition
- > Experimental Setup
- Deep Neural Networks (DNN)
 - > DNN training, Sequence-Discriminative Training
 - > Results

Recurrent Neural Networks (RNN)

- > LSTM, CTC, Depth, Dropout
- > Results

Conclusions

- System Combination and Final Results
- Future Work

Offline Handwriting Recognition

Sentence Database P02-127 Gay nodded. "I know that you're right Doc. I think now that I do realise that, and in any case," she added a little sadly, "if I did change Gavin, he wouldn't be the same, if you know what I mean." "You sound like Alice in Wonderland," Doc gently mocked her, "and I'm glad you're beginning to see that you're wasting your time on that chap. Gay nodded." I know that you're right Doc. I think now that I do nealise that, and is any case, she added a little de sadly, " if I did charge Gaves, he wouldn't be the same, if you know what I mean. "You sound like lilice in Menderland," Doe gertly mocked her, and i've beginning to see that you're reading alon here

te me permets	de vous évrire c	or je souhaiterais
necessi un co	talogue des p ^a	uduit proposé
Dares l'atteu	te de vous le	ie, venillez agréés
nes solutat		es

Gay nodded. " I know that ...

Je me permets de vous écrire ...

Handwriting Recognition

Preprocessing — slope and slant correction, contrast enhancement, region-dependent height normalization (72px)

Feature extraction — sliding window, extraction of vectors of handcrafted features, or extraction of pixel intensities

Optical Modeling — state emission probabilities, with GMMs (generative), or transformed posteriors from neural networks (discriminative)

Language Modeling — Lexicon (sequences of characters \rightarrow sequences of words) + statistical *n*-gram language model (probability of word given history of *n*-1 words)

• $\hat{\mathbf{W}} = arg \max_{\mathbf{W}} p(\mathbf{W}|\mathbf{x}) = arg \max_{\mathbf{W}} p(\mathbf{x}|\mathbf{W})p(\mathbf{W})$

Hybrid NN / HMM

Hidden Markov Model (HMM)

- Characters are modeled by state sequence (firstorder Markov chain) – 6 for IAM, 5 for Rimes
- Associated with a transition model ...
- ... and an emission model: generative, usually mixtures of Gaussians (GMMs)

Hybrid Neural Network (NN) / HMM

- NN computes state posterior probability given input vector (usually a concatenation of several consecutive frames)
- Rescaling by state priors, we get a discriminative NN emission model to replace GMMs

 $\frac{p(q_t|x_t)}{p(q_t)} \approx \frac{p(x_t|q_t)}{p(x_t)}$

Experimental Setup — **Databases**

IAM - English		Pages	Lines	Words (7,843)	Characters (79)
	Train	747	6,482	55,081	287,727
	Validation	116	976	8,895	43,050
	Test	336	2,915	25,920	128,531

Rimes - French		Pages	Lines	Words (8,061)	Characters (99)
	Train	1,351	10,203	73,822	460,201
	Validation	149	1,130	8,380	51,924
	Test	100	778	5,639	35,286

Experimental Setup — LM

Optical model recognizes text lines, but the LM is incorporated at the paragraph level (makes more sense w.r.t sentence boundaries) \rightarrow 1-3% absolute WER improvement

				Validation		Test	
Database	Voc.Size	Corpus	LM	00V%	PPL	00V%	PPL
IAM	50,000	LOB* + Brown + Wellington	3-gram with mod. KN	4.3%	298	3.7%	329
Rimes	12,000	Training set annotations	4-gram with mod. KN	2.9%	18	2.6%	18

* the lines of the LOB corpus present in the validation and evaluation data have been ignored in the training of the language model

Experimental Setup — **Features** *Handcrafted features*

- Sliding window of 3px, with 3px step
- 56 handcrafted features extracted from each frame
 - 3 pixel density measures in the frame and different horizontal regions
 - 2 measures of the center of gravity
 - 12 pixel configuration relative counts (6 from the whole frame and 6 in the core region)
 - 3 pixel density in vertical regions
 - HoG in 8 directions
 - + deltas (= 28 + 28)

Pixels

- Sliding window of 45px, with 3px step
- Rescaled to 20 x 32px (keeps aspect-ratio)
- Extraction of the 640 gray-level pixel intensities per frame

Deep Multi-Layer Perceptrons

Deep Multi-Layer Perceptrons are ...

- ★ ... MLPs with many (3+) hidden layers
- ... state-of-the-art and now standard in HMM-based speech recognition
- ★ ... widely used in Computer Vision, e.g. for isolated character or digit recognition
- ★ ... not yet applied to HMM-based unconstrained handwritten text line recognition

DNN Training

- Forced alignments with a bootstrapping system
 → training set of frames with correct state
- Train DNN to classify each frame among all different states
- Stochastic Gradient Descent with classification costs (e.g. Negative Log-Likelihood, Cross-Entropy)

- Weight initialization with 1 epoch of Contrastive
 Divergence unsupervised training of Restricted Boltzmann
 Machine, layer by layer (Hinton, 2006)
- Finally, standard supervised training of the whole network (cross-entropy, SGD)

Hinton, G., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. *Neural computation*, *18*(7), 1527-1554.

DNN — **Depth and Context**

Pixels

DNN Sequence-Discriminative Training

Goal: improve nnet response for the correct state sequence, while decreasing the prediction of concurrent hypotheses (sMBR: state-level Minimum Bayes Risk)

- Compute forced alignments
- Extract lattices with unigram LM
- Compute the cost. The accuracy A is
 1 if the considered state is in the forced alignments at this position, 0 otherwise
- Gradients are obtained with the forward-backward algorithm

$$\mathcal{F}_{MBR} = \sum_{i \in \mathcal{I}} \log \frac{\sum_{W} p(O_i|S)^{\kappa} P(W) A(W, W_i)}{\sum_{W'} p(O_i|S')^{\kappa} P(W')}$$

WER (%)		Framewise	+ sMBR	
RIMES	Features	14.1	13.5 (-4.2%)	
	Pixels	13.6	13.1 (-3.7%)	
ΙΑΜ	Features	12.4	11.7 (-5.6%)	
	Pixels	12.4	11.8 (-4.8%)	

Kingsbury, Brian. Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling. (2009) International Conference on Acoustics, Speech and Signal Processing (ICASSP). 3761-3764

Recurrent Neural Networks

- Recurrent = hidden layer at time t receives input from previous layer, and from hidden layer at t-1
- > May also go through the sequence of inputs backwards \rightarrow **Bidirectional RNNs** (BRNNs)
- ➢ Special recurrent units to avoid training problems (vanishing gradient) and learn arbitrarily long dependencies:
 Long Short-Term Memory units (LSTM)
 → BLSTM-RNNs
- Instead of a sequence of features vectors, one may use the image as input
 - \rightarrow Multi-Dimensional (MD)LSTM-RNN

RNNs for Handwriting Recognition

RNNs in handwritten text recognition contests :

winner of ICDAR'09 (recognition of French and Arabic words), ICDAR'11 (French text lines), OpenHart'13 (Arabic paragraphs), Maurdor'14 (Multilingual paragraphs), HTRtS'14 (English lines)...

RNNs used :

- MDLSTM-RNNs : image inputs, *few features* (2x4) at the bottom, increasing number of features along with maps subsampling
- BLSTM-RNNs : sequence of feature vector inputs, *few LSTM layers* with many features

This work :

Deep BLSTM-RNNs with many features

BLSTM-RNNs — Architecture

RNNs — **CTC** training

Connectionist Temporal Classification (CTC; Graves, 2006)

- RNN has one output for each character, plus one blank (Ø) output
- blank = optional between two successive and different characters, mandatory if the characters are the same

 $[\varnothing \ \dots] \ T \ \dots \ [\varnothing \ \dots] \ E \ \dots \ [\varnothing \ \dots] \ A \ \dots \ \rightarrow \ TEA$

- During training, consider all possible labelings/segmentations of the input sequence
- Minimize the Negative Log-Likelihood of the correct label sequence (w/o blank)
- Computed efficiently with forward-backward

RNNs — Depth

More than one LSTM hidden layer is generally better

For **pixel intensities inputs**:

- one hidden LSTM is largely insufficient
- many hidden layer yield RNNs competitive with those trained with features
- support the idea that deep networks learn useful representations of input in early layers

RNNs — **Dropout**

- Regularization technique prevents co-adaptation: make units useful on their own, not in combination with outputs of others
- Training: randomly drop hidden activations with probability p
 ≈ sample for 2^N architectures sharing weights
- Decoding: keep all activations but scale them by 1-p to compensate
 ≈ geometric mean of 2^N networks
- In RNNs, dropout is applied to the outputs of LSTM units

WER (%)		7x200	+ dropout
DIMES	Features	14.1	12.7 (-9.9%)
RIMES	Pixels	14.7	13.6 (-7.5%)
	Features	12.9	11.9 (-7.8%)
	Pixels	13.1	11.8 (-9.9%)

Vu Pham, Théodore Bluche, Christopher Kermorvant, Jérôme Louradour (2014) *Dropout improves recurrent neural networks for handwriting recognition.* In International Conference on Frontiers in Handwriting Recognition (ICFHR), 285-290.

	WER (%)	CER (%)
GMM-HMM	19.6	9.0
DNN features	14.7	5.8
DNN pixels	14.7	5.9
RNN features	14.3	5.3
RNN pixels	14.8	5.6
ROVER combination	11.9	4.9
Doetsch et al., 2014 *	12.2	4.7
Kozielski et al., 2013 *	13.3	5.1
Pham et al., 2014	13.6	5.1
Messina et al., 2014 *	19.1	-

* open-vocabulary

Results — Rimes		WER (%)	CER (%)
Results on Rimes database	GMM-HMM	15.8	6.0
	DNN features	13.5	4.1
	DNN pixels	12.9	3.8
	RNN features	12.7	4.0
	RNN pixels	13.8	4.3
Cann Duntees Dun of cum est part of Router	ROVER combination	11.8	3.7
6-	Pham et al., 2014	12.3	3.3
	Doetsch et al., 2014	12.9	4.3
₩ 3- 2- 2-	Messina et al., 2014	13.3	-
	Kozielski et al., 2013	13.7	4.6
GANN DANEERS DAN OF RANKERS RANK OF ROALS			

Conclusions

- With deep (MLP or recurrent) neural networks, features do not seem important
 - \rightarrow mere pixel intensities yield competitive if not better results
- Deep MLP are also very good for handwriting recognition
 \rightarrow RNNs are not the only option
- Even for BLSTM-RNNs, depth improves the final performance \rightarrow Don't stop at one or two LSTM layers
- Both approaches are complementary \rightarrow ROVER combination
- Key aspects : context, depth, sequence-training, dropout, LM on paragraphs

Future Work

- → Deep MLPs
 - dropout, CTC training
- → Recurrent Neural Networks
 - sequence-discriminative training
- → Going further...
 - include other types of NN, such as Convolutional Neural Networks, also very popular in Computer Vision, and MDLSTM-RNNs
 - Tandem combination: extract features from NNs

Thank you!

Théodore Bluche tb@a2ia.com

... and thanks to A.-L. Bernard, V. Pham, J. Louradour for some of the illustrations of this presentation ...