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Abstract. Long Short-Term Memory Recurrent Neural Networks are
the current state-of-the-art in handwriting recognition. In speech recog-
nition, Deep Multi-Layer Perceptrons (DeepMLPs) have become the
standard acoustic model for Hidden Markov Models (HMMs). Although
handwriting and speech recognition systems tend to include similar com-
ponents and techniques, DeepMLPs are not used as optical model in
unconstrained large vocabulary handwriting recognition. In this paper,
we compare Bidirectional LSTM-RNNs with DeepMLPs for this task.
We carried out experiments on two public databases of multi-line hand-
written documents: Rimes and IAM. We show that the proposed hybrid
systems yield performance comparable to the state-of-the-art, regard-
less of the type of features (hand-crafted or pixel values) and the neural
network optical model (DeepMLP or RNN).

Keywords: Handwriting Recognition •Recurrent Neural Networks •Deep
Neural Networks

1 Introduction

Handwriting recognition is the problem of transforming an image into the text it
contains. Unlike Optical Character Recognition (OCR), segmenting each char-
acter is difficult, mainly due to the cursive nature of handwriting. One usually
prefers to recognize whole words or lines of text, i.e. the sequence of characters,
with HMMs or RNNs.

In HMMs, the characters are modeled as sequences of hidden states, associ-
ated with an emission probability model. Gaussian Mixture Models (GMMs) is
the standard optical model in HMMs. However, in the last decade, emission prob-
ability models based on artificial neural networks have (re)gained considerable
interest in the community, mainly due to the deep learning trend in computer
vision and speech recognition. In this latter domain, major improvements have
been observed with the introduction of deep neural networks.

A significant usage of neural network for handwriting recognition should
also be noted. The MNIST database of handwritten digits received a lot of
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attention in computer vision and in the application of deep learning techniques.
Convolutional Neural Networks introduced by Le Cun et al. [20] have soon been
applied to handwriting recognition problems, and were recently tested on public
databases for handwritten word recognition, yielding state-of-the-art results [5].

The state-of-the-art performance on many public handwriting databases is
achieved by RNNs. This type of neural network has the ability to use more con-
text than HMMs and to model the whole sequence directly. The best published
results on IAM [19], Rimes [26, 19] and OpenHaRT [26, 32], were achieved by
systems involving an RNN component.

In this work, we compare different approaches to optical modeling in hand-
writing recognition systems. In particular, we studied different kinds of neural
networks (DeepMLPs and RNNs), and features (hand-crafted and pixel values).

We report results on the publicly available IAM [22] and Rimes [1] databases.
Major improvements have been recently reported on these tasks, mainly due to a
better pre-processing of the images, and an open-vocabulary language model [19].
This work shows that similar Word Error Rates (WERs) can be achieved with
different kinds of features (hand-crafted geometric and statistical features, and
pixel values), and optical models (DeepMLPs and RNNs), and a rather standard
pre-processing. We note that for DeepMLPs to be comparable in performance
to RNNs, a sequence training criterion, such as state-level Minimum Bayes Risk
(sMBR) [18] should be used.

This paper is divided as follows. Section 2 contains a brief litterature review.
Section 3 describes our systems. Section 4 presents the experiments carried out
and the results obtained. Conclusions are drawn in Section 5.

2 Relation to Prior Work

Recurent Neural Networks, with the Long Short-Term Memory (LSTM) units,
are particularly good for handwriting recognition. State-of-the-art systems for
many public databases include an RNN component. Kozielski et al. [19] trained
a bidirectional LSTM-RNN (BLSTM-RNN) on sequences of feature vectors, and
HMM state targets. They then extract features from hidden layer activations to
train a standard GMM-HMM, and report the best known results on the IAM
database. On the other hand, Graves et al. [14], and more recently [4, 26] trained
Multi-Dimensional LSTM-RNNs (MDLSTM-RNNs), which operate directly on
the raw image, with a Connectionist Temporal Classification (CTC) objective,
which allows to train the network directly using the sequence of characters as
targets. With the dropout technique, [26] report the best results on both Rimes
and OpenHaRT databases.

Multi-layer Perceptrons with one hidden layer were used for optical mod-
eling in hybrid systems by España-Bocquera et al. [11] and Dreuw et al. [10].
Deep Neural Networks (DeepMLPs), were applied to simple handwriting recog-
nition tasks such as isolated character or digits recognition [7, 8]. More recently,
they were used in combination with HMMs for keywords spotting in handwrit-
ten documents [31]. They enjoy considerable research attention since efficient



Handwriting Recognition with Deep and Recurrent Neural Networks 3

training methods have been proposed. They achieve excellent results in various
computer vision tasks (e.g. object recognition), but also in speech recognition,
where they replace efficiently the conventional GMMs in HMMs. Their architec-
ture is simple (multi-layer perceptrons), and their depth seems to contribute to
better modeling [25] and robustness [9]. It has been shown [33, 29] that optimiz-
ing training criteria over whole sequences (e.g. sMBR), including the language
constraints, leads to improvements compared with a framewise criterion. Similar
(global) training of handwriting recognition systens were already proposed in the
90s [21, 20]. In this work, we show that the framework of DeepMLP and sequence
training used in speech recognition can successfully be applied to handwriting
recognition, with very good results on public databases, and compete with RNNs.

3 System Overview

3.1 Image Pre-Processing and Feature Extraction

The goal of pre-processing is to remove the undesirable variabilities from images.
First, the lines are deskewed [3] and deslanted [6]. Then, the darkest 5% of pixels
are mapped to black and the lightest 70% are mapped to white, with a linear
interpolation in between, to enhance the contrast. We added 20 columns of white
pixels to the beginning and end of each line to account for empty context. Most
systems require an image with fixed height. We first detect three regions in the
image (ascenders, descenders and core region) [34], and scale these regions to
three fixed heights.

We built baseline systems using the handcrafted features described in [2],
which gave reasonable performance on several public databases [23, 2]. We ex-
tracted them with a sliding window, scanned left-to-right through the prepro-
cessed text line image. It is defined by two parameters: its width and shift (con-
trolling the overlap between consecutive windows). To fix these parameters, we
trained GMM-HMMs using the handcrafted features and different widths and
shifts of the sliding window and keep the parameters yielding the best perfor-
mance on the validation set. The optimal values we found are a width of 3px, a
shift of 3px for both databases.

We also carried out experiments on pixel features (for NNs only). They are ex-
tracted with a sliding window of width 45px and shift 3px, rescaled to 20x32px.
The pixel values are normalized to lie in the interval [0, 1] (1 corresponding
to white), producing 640-dimensional feature vectors. No Principal Component
Analysis or other decorrelation or dimensionality reduction algorithm were ap-
plied.

3.2 Hidden Markov Models

The topology of the HMM is left-to-right: two output transitions per state, one
to itself and one to the next state. We tried different number of HMM states
in character models (along with different sliding window parameters), and kept
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the values yielding the best GMM-HMM results on the validation sets. We built
6-state models for IAM and 5-state models for Rimes. We added two 2-state
silence HMMs to model optional empty context on the left and right of words.

3.3 Neural Networks

Multi Layer Perceptrons and Deep Neural Networks Multi Layer Per-
ceptrons (MLPs) are networks organized in several layers, each one fully con-
nected to the next. The input corresponds to an observation vector, optionally
concatenated with a small amount of previous and next frames. The output is
a prediction of the HMM states. Deep Neural Networks (DeepMLPs) are MLPs
with several hidden layers. We first initialize the weights with unsupervised pre-
training, consisting in stacking Restricted Boltzmann Machines, trained with
contrastive divergence, as explained in [15]. Then, we perform a supervised dis-
criminative training of the whole network. The targets are obtained by forced
alignment of the training set with a bootstrapping model. We optimize the cross-
entropy criterion with Stochastic Gradient Descent (SGD).

Sequence training of neural networks consists in optimizing the network pa-
rameters with a sequence-discriminative criterion rather than using the frame-
level cross-entropy criterion. Sequence training is similar to the discriminative
training of GMM-HMMs. Among different possibilities, we chose the state-level
Minimum Bayes Risk (sMBR) criterion, described in [18], which yields slightly
better WER than other sequence criteria on a speech recognition task (Switch-
board) [33]. In speech recognition, sequence training results in relative perfor-
mance gains of 5-10% for various tasks [33, 30].

Recurrent Neural Networks (RNNs) In RNNs, the input to a given re-
current layer are not only the activations of the previous layers, but also its
own activations at the previous time step. This characteristic enables them to
naturally work with sequential inputs, and to use the past context to make
predictions. Long Short-Term Memory (LSTM) units are recurrent neurons, in
which a gating mechanism avoids the vanishing gradient problem, appearing in
conventional RNNs [16, 14], and enables to learn arbitrarily long dependencies.
In Bi-Directional LSTM-RNNs (BDLSTM-RNNs), LSTM layers are doubled:
the second layer is connected to the “next” time step rather than the previous
one. Thus the input sequence is processed in both directions, so past and future
context are used to make predictions (see Fig. 1). The information coming from
both directions is summed component-wise after the LSTM layers, and the result
is an input for a feed-forward layer. This is a generalization of the MDLSTM-
RNN architecture descibed in [14, 27] to the case of sequences of feature vectors.

Finally, the Connectionnist Temporal Classification (CTC) paradigm [13]
has been used to train the RNNs. With CTC, no prior segmentation of the
training data (line images) is required. Therefore, we do not need a bootstrapping
procedure involving forced alignments with a previously trained HMM. Instead,
we can select the target sequence to be the sequence of character in the image
annotation, which simplifies the training procedure.
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Fig. 1. Bidirectionnal Recurrent Neural Networks

4 Experiments and Results

4.1 Rimes and IAM Databases

The Rimes database [1] consists of images of handwritten paragraphs from sim-
ulated French mail. The setup for the ICDAR 2011 competition is a training set
of 1,500 images, and an evaluation set of 100 images. We held out the last 149
images from the training set for system validation. We built a 4-gram language
model (LM) with modified Kneser-Ney discounting from the training annota-
tions. The vocabulary is made of 12k words. The language model has a perplex-
ity of 18 and out-of-vocabulary (OOV) rate of 2.9% on the validation set (18
and 2.6% on the evaluation set).

The IAM database [22] consists of images of handwritten documents. They
correspond to English texts exctracted from the LOB corpus [17], copied by
different writers. The database is split into 747 images for training, 116 for
validation, and 336 for evaluation. We used a 3-gram language model limited to
the 50k most frequent words from the training set. It was trained on the LOB,
Brown and Wellington corpora. The passages of the LOB corpus appearing in the
validation and evaluation sets were removed prior to LM training. The resulting
model has a perplexity of 298 and OOV rate of 4.3% on the validation set (329
and 3.7% on the evaluation set).

4.2 Decoding Method

We used the Kaldi toolkit [28] to decode the sequences of observation vectors
(GMMs, DeepMLPs), or the sequences of character predictions (RNNs). The
decoding was done for complete paragraphs rather than lines, to benefit from
the language model history across line boundaries. The optical scaling factor,
balancing the importance given to the optical model scores and to the language
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model scores, and the word insertion penalty were tuned on the validation sets.
This optimization can yield from 1 to 3% absolute improvement.

4.3 GMM-HMM

We trained GMM-HMM on both tasks, using the handcrafted features, and the
Maximum Likelihood criterion. The number of Gaussians in the mixtures was
increased at each iteration until the performance on the validation set decreases
for more than 5 iterations. The GMM-HMM have not been discriminatively
trained. They were only used to bootstrap the training of DeepMLPs.

4.4 Deep Neural Networks

To train the DeepMLPs, we performed the forced alignments of the training set
with the GMM-HMMs, to have a target HMM state for each input observation.
We held out 10% of this dataset for validation and early stopping. Overall, the
datasets contain 5,6M examples for Rimes and 3,8M examples for IAM.

DeepMLP on Handcrafted Features We inverstigated different numbers
of hidden layers (1 to 7) in the DeepMLP and different sizes of input context
(±{1, 3, 5, 7, 9} frames). The number of hidden nodes in each layer was set to
1,024. The input features were normalized to zero mean and unit variance along
each dimension. The networks were pre-trained using 1 epoch of unsupervised
training for each layer, followed by a few epochs of supervised training with
stochastic gradient descent and a cross-entropy criterion. The training finished
when no more improvement was observed on the validation set.

The results are depicted on Fig. 2. The performances of the different networks
are similar to each other. It looks like more than one hidden layer is generally
better, but the performance gain when we add more layers is not significant.
We selected the best architectures based on the performance on the validation
sets: 5 hidden layers with 1,024 units and 15 frames of context (central frame
±7) for IAM, 4 hidden layers with 1,024 units and 7 frames of context (central
frame ±3) for Rimes. Additionally, training the networks with 5 more epochs of
sMBR sequence training allowed to obtain 4 to 6% relative WER improvement
(Table 1).

DeepMLP on Pixels Instead of adding context frames to the central frames,
we extracted the pixels values in a larger sliding window. The means and stan-
dard deviations were computed across all dimensions simultaneously, not sepa-
rately.

For the pixel DeepMLP, we notice a wider difference between one and more
hidden layers (Fig. 3) than for DeepMLP on handcrafted features. The justifi-
cation could be that in hancrafted features DeepMLPs, the inputs are already
a higher level representation of the image, while in pixel DeepMLPs, the first
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Fig. 2. Effect of depth and size of context (Features DeepMLP, Rimes validation set)

Table 1. Improvement brought by sMBR sequence training (results reported on vali-
dation sets)

System WER - Rimes CER - Rimes WER - IAM CER - IAM

Features DeepMLP 14.1% 4.0% 12.4% 4.1%
+ sMBR training 13.5% (-4.2%) 4.0% (-0.0%) 11.7% (-5.6%) 3.9% (-4.9%)

Pixel DeepMLP 13.6% 3.9% 12.4% 4.4%
+ sMBR training 13.1% (-3.7%) 3.8% (-2.6%) 11.8% (-4.8%) 4.2% (-4.5%)

layer(s) perform the transformation of the image into a higher level representa-
tion. We selected the best architectures based on the performance on the val-
idation sets: 4 hidden layers with 1,024 units for IAM, 7 hidden layers with
1,024 units for Rimes. Again, sMBR training brought a few percents relative
improvement over cross-entropy training (Table 1).

4.5 Recurrent Neural Networks

Since the RNNs are trained with a CTC objective function to predict sequences
of characters, there is no need for a bootstrapping procedure. All the RNNs have
been trained on the whole training set and validated on the validation set.

BDLSTM-RNN on Handcrafted Features The RNNs naturally takes into
account the left and right context to make predictions. Thus, we did not con-
catenate context feature frames. The input features were normalized to zero
mean and unit variance along each dimension. We explored different depths and
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Fig. 3. Effect of increasing the number of hidden layers (Pixel DeepMLP, Rimes vali-
dation set)

widths, and also applied the dropout regularization technique in feed-forward
layers, as explained in [26, 27].

We report the results in Table 2. uCER stands for unconstrained CER, and
refers to the character error rate when the RNN is used alone to make character
predictions, i.e. without lexical and language model. While it seems better to
have more than one hidden layer, the biggest improvements were achieved with
dropout. The best architectures, selected based on the results on the validation
sets, are 7 hidden layers (4 LSTM and 3 feed-forward) of 200 units with dropout
for Rimes and IAM.

BDLSTM-RNN on Pixels For pixel features, the inputs are normalized with
the mean and standard deviation of pixel values across all dimensions. We also
explored different widths and depths and dropout, and selected the best models
based on the validation results. For Rimes and IAM, the best network has 7
hidden layers of 200 units and dropout. The results for different architectures on
Rimes database are shown on Table 2. Again, we notice that the effect of having
more than one hidden layer is more important for pixel-based models than for
models using handcrafted features.

The final results, comparing different models and input features on the one
hand, and comparing our proposed systems with other published results on the
other hand, are reported on Tables 3 (IAM) and 4 (Rimes). We see that both
handcrafted and pixel features, and both DeepMLPs and RNNs can achieve re-
sults that are close to the best reported ones. For DeepMLPs, sequence training
seems crucial to attain this performance. Furthermore, we notice that although
RNNs have become a standard component of handwriting recognition systems,
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Table 2. RNNs on handcrafted and pixel features, results for Rimes validation set.
uCER stands for unconstrained CER. WER and CER are computed with a lexicon
and language model.

Handcrafted features Pixel features

Archi. dropout CTC cost uCER WER CER CTC cost uCER WER CER

1x100 - 0.5217 14.5 14.9 4.7 1.201 33.8 24.1 10.3
3x100 - 0.3864 10.6 13.6 4.1 0.4834 12.9 15.1 5.1
5x100 - 0.3516 9.3 14.7 4.3 0.3637 9.8 14.0 4.4
5x200 - 0.3295 8.5 13.5 3.9 0.3724 9.7 15.4 4.9
7x100 - 0.3093 8.0 13.8 4.1 0.3313 8.7 14.5 4.5
7x200 - 0.2969 8.0 14.1 4.1 0.3445 8.9 14.7 5.0
7x200 x 0.2397 5.7 12.7 3.6 0.2351 6.0 13.6 4.1
9x100 - 0.2937 7.6 13.2 3.9 0.3229 8.6 14.5 4.5
9x100 x 0.2565 6.0 13.1 3.8 0.2559 6.3 13.8 4.4

Table 3. Results on IAM database

Dev. Eval.
WER CER WER CER

g. GMM-HMM baseline 15.2 6.3 19.6 9.0

df. Features DeepMLP-5x1024 11.7 3.9 14.7 5.8
dp. Pixel DeepMLP-4x1024 11.8 4.2 14.7 5.9
rf. Feature BDLSTM-RNN 7x200 + dropout 11.9 3.9 14.3 5.3
rp. Pixels BDLSTM-RNN 7x200 + dropout 11.8 4.0 14.8 5.6

ROVER rf + rp + df + dp 9.7 3.6 11.9 4.9

Kozielski et al. [19] 9.5 2.7 13.3 5.1
Pham et al. [26] 11.2 3.7 13.6 5.1

Kozielski et al. [19] 11.9 3.2 - -

DeepMLPs – which have become standard in hybrid speech recognition systems
– can perform equally well. Finally, we cannot draw a clear conclusion regard-
ing whether RNNs or DeepMLPs should be preferred, or whether handcrafted
features are more suited than pixel values.

Our different optical models and features are also complementary, as shown
by their ROVER combination [12], which, to the best of our knowledge constitute
the best published results on both databases, outperforming the open-vocabulary
approaches proposed in [19] and [24].

5 Conclusion

In this paper, we shown that state-of-the-art WERs can be achieved with both
DeepMLPs - standard method for speech recognition, and RNNs - standard
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Table 4. Results on Rimes database

Dev. Eval.
WER CER WER CER

g. GMM-HMM baseline 17.2 5.9 15.8 6.0

df. Features DeepMLP-4x1024 13.5 4.0 13.5 4.1
dp. Pixel DeepMLP-7x1024 13.1 3.8 12.9 3.8
rf. Feature BDLSTM-RNN 7x200 + dropout 12.7 3.6 12.7 4.0
rp. Pixels BDLSTM-RNN 7x200 + dropout 13.6 4.1 13.8 4.3

ROVER rf + rp + df + dp 11.8 3.4 11.8 3.7

Pham et al. [26] - - 12.3 3.3
Messina et al. [24] - - 13.3 -

Kozielski et al. [19] - - 13.7 4.6

method for handwriting recognition. Even with a pretty simple image prepro-
cessing, the pixel values could replace handcrafted features. Future work may
include an evaluation of convolutional neural networks and Multi-Dimensional
(MD)LSTM-RNNs for a more comprehensive comparison of neural network op-
tical modeling. An evaluation of a tandem combination (where the neural net-
works are used to extract features rather than to make predictions) could be
carried out. Finally, it would be interesting to evaluate the robustness of the
proposed models, i.e. to see how good the results could be when these systems
are applied to new databases, not seen during training.

References
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