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Abstract

Offline handwriting recognition systems require cropped text line images for both
training and recognition. On the one hand, the annotation of position and transcript
at line level is costly to obtain. On the other hand, automatic line segmentation
algorithms are prone to errors, compromising the subsequent recognition. In this
paper, we propose a modification of the popular and efficient Multi-Dimensional
Long Short-Term Memory Recurrent Neural Networks (MDLSTM-RNNs) to
enable end-to-end processing of handwritten paragraphs. More particularly, we
replace the collapse layer transforming the two-dimensional representation into
a sequence of predictions by a recurrent version which can select one line at a
time. In the proposed model, a neural network performs a kind of implicit line
segmentation by computing attention weights on the image representation. The
experiments on paragraphs of Rimes and IAM databases yield results that are
competitive with those of networks trained at line level, and constitute a significant
step towards end-to-end transcription of full documents.

1 Introduction

Offline handwriting recognition consists in recognizing a sequence of characters in an image of
handwritten text. Unlike printed texts, images of handwriting are difficult to segment into characters.
Early methods tried to compute segmentation hypotheses for characters, for example by performing a
heuristic over-segmentation, followed by a scoring of groups of segments (e.g. in [4]). In the nineties,
this kind of approach was progressively replaced by segmentation-free methods, where a whole
word image is fed to a system providing a sequence of scores. A lexicon constrains a decoding step,
allowing to retrieve the character sequence. Some examples are the sliding window approach [25], in
which features are extracted from vertical frames of the line image, or space-displacement neural
networks [4]. In the last decade, word segmentations were abandoned in favor of complete text line
recognition with statistical language models [10].

Nowadays, the state of the art handwriting recognition systems are Multi-Dimensional Long Short-
Term Memory Recurrent Neural Networks (MDLSTM-RNNs [18]), which consider the whole image,
alternating MDLSTM layers and convolutional layers. The transformation of the 2D structure into
a sequence is computed by a simple collapse layer summing the activations along the vertical axis.
Connectionist Temporal Classification (CTC [17]) allows to train the network to both align and
recognize sequences of characters. These models have become very popular and won the recent
evaluations of handwriting recognition [9, 34, 37].

However, current models still need segmented text lines, and full document processing pipelines
should include automatic line segmentation algorithms. Although the segmentation of documents
into lines is assumed in most descriptions of handwriting recognition systems, several papers or
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surveys state that it is a crucial step for handwriting text recognition systems [8, 28]. The need
of line segmentation to train the recognition system has also motivated several efforts to map a
paragraph-level or page-level transcript to line positions in the image (e.g. recently [7, 16]).

Handwriting recognition systems evolved from character to word segmentation, and to complete
line processing nowadays. The performance has always improved by making less segmentation
hypotheses. In this paper, we pursue this traditional tendency. We propose a model for multi-
line recognition based on the popular MDLSTM-RNNs, augmented with an attention mechanism
inspired from the recent models for machine translation [3], image caption generation [38], or speech
recognition [11, 12]. In the proposed model, the “collapse” layer is modified with an attention
network, providing weights to modulate the importance given at different positions in the input. By
iteratively applying this layer to a paragraph image, the network can transcribe each text line in turn,
enabling a purely segmentation-free recognition of full paragraphs.

We carried out experiments on two public datasets of handwritten paragraphs: Rimes and IAM. We
report results that are competitive with the state-of-the-art systems, which use the ground-truth line
segmentation. The remaining of this paper is organized as follows. Section 2 presents methods related
to the one presented here, in terms of the tackled problem and modeling choices. In Section 3, we
introduce the baseline model: MDLSTM-RNNs. We expose in Section 4 the proposed modification,
and we give the details of the system. Experimental results are reported in Section 5, and followed by
a short discussion in Section 6, in which we explain how the system could be improved, and present
the challenge of generalizing it to complete documents.

2 Related Work

Our work is clearly related to MDLSTM-RNNs [18], which we improve by replacing the simple
collapse layer by a more elaborated mechanism, itself made of MDLSTM layers. The model we
propose iteratively performs an implicit line segmentation at the level of intermediate representations.

Classical text line segmentation algorithms are mostly based on image processing techniques and
heuristics. However, some methods were devised using statistical models and machine learning
techniques such as hidden Markov models [8], conditional random fields [21], or neural networks [24,
31, 32]. In our model, the line segmentation is performed implicitly and integrated in the neural
network. The intermediate features are shared by the transcription and the segmentation models, and
they are jointly trained to minimize the transcription error.

Recently, many “attention-based” models were proposed to iteratively select in an encoded signal
the relevant parts to make the next prediction. This paradigm, already suggested by Fukushima
in 1987 [15], was successfully applied to various problems such as machine translation [3], image
caption generation [38], speech recognition [11, 12], or cropped words in scene text [27]. Attention
mechanisms were also parts of systems that can generate or recognize small pieces of handwriting
(e.g. a few digits with DRAW [20] or RAM [2], or short online handwritten sequences [19]). Our
system is designed to handle long sequences and multiple lines.

In the field of computer vision, and particularly object detection and recognition, many neural
architectures were proposed to both locate and recognize the objects, such as OverFeat [35] or spatial
transformer networks (STN [22]). In a sense, our model is quite related to the DenseCap model for
image captioning [23], itself similar to STNs. However, we do not aim at explicitly predicting line
positions, and STNs are not as good with a large amount of small objects.

We recently proposed an attention-based model to transcribe full paragraphs of handwritten text,
which predicts each character in turn [6]. Outputting one token at a time turns out to be prohibitive in
terms of memory and time consumption for full paragraphs, which typically contain about hundreds
of characters. In the proposed system, the encoded image is not summarized as a single vector at each
timestep, but as a sequence of vectors representing full text lines. It represents a huge speedup, and
a comeback to the original MDLSTM-RNN architecture, in which the collapse layer is augmented
with an MDLSTM attention network similar to the one presented in [6].

3 Handwriting Recognition with MDLSTM and CTC

MDLSTM-RNNs [18] were first introduced in the context of handwriting recognition. The Multi-
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Figure 1: MDLSTM-RNN architecture for handwriting recognition. LSTM layers in four scanning
directions are followed by convolutions. The feature maps of the top layer are are summed in the
vertical dimension, and character predictions are obtained after a softmax normalization.

Dimensional Long Short-Term Memory layers scan the input in the four possible directions. The
LSTM cell inner state and output are computed from the states and outputs of previous positions in
the considered horizontal and vertical directions. Each MDLSTM layer is followed by a convolutional
layer. At the top of this network, there is one feature map for each character. These maps are collapsed
into a sequence of prediction vectors, normalized with a softmax activation. The whole architecture
is depicted in Figure 1. The Connectionist Temporal Classification (CTC [17]) algorithm, which
considers all possible labellings of the sequence, may be applied to train the network to recognize
text lines.

The 2D to 1D conversion happens in the collapsing layer, which computes a simple aggregation of
the feature maps into vector sequences, i.e. maps of height 1. This is achieved by a simple sum across
the vertical dimension:

zi =

H∑
j=1

aij (1)

where zi is the i-th output vector and aij is the input feature vector at coordinates (i, j). All the
information in the vertical dimension is reduced to a single vector, regardless of its position in the
feature maps, preventing the recognition of multiple lines within this framework.

4 An Iterative Weighted Collapse for End-to-End Handwriting Recognition

In this paper, we replace the sum of Eqn. 1 by a weighted sum, in order to focus on a specific part of
the input. The weighted collapse is defined as follows:

z
(t)
i =

H∑
j=1

ω
(t)
ij aij (2)

where ω(t)
ij are scalar weights between 0 and 1, computed at every time t for each position (i, j). The

weights are provided by a recurrent neural network, illustrated in Figure 2, enabling the recognition
of a text line at each timestep.

Figure 2: Proposed modification of the collapse layer. While the standard collapse (left, top) computes
a simple sum, the weighted collapse (right, bottom) includes a neural network to predict the weights
of a weighted sum.
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This collapse, weighted with a neural network, may be interpreted as the “attention” module of an
attention-based neural network similar to those of [3, 38]. This mechanism is differentiable and can
be trained with backpropagation. The complete architecture may be described as follows.

An encoder extracts feature maps from the input image I:

a = (aij)(i,j)∈[1,W ]×[1,H] = Encoder(I) (3)

where (i, j) are coordinates in the feature maps. In this work, the Encoder module is an MDLSTM
network with same architecture as the model presented in Section 3.

A weighted collapse provides a view of the encoded image at each timestep in the form of a weighted
sum of feature vector sequences. The attention network computes a score for the feature vectors at
every position:

α
(t)
ij = Attention(a, ω(t−1)) (4)

We refer to ω(t) = {ω(t)
ij }(1≤i≤W, 1≤j≤H) as the attention map at time t, which computation depends

not only on the encoded image, but also on the previous attention features. A softmax normalization
is applied to each column:

ω
(t)
ij = eα

(t)
ij /

∑
j′

e
α

(t)

ij′ (5)

In this work, the Attention module is an MDLSTM network.

This module is applied several times to the features from the encoder. The output of the attention
module at iteration t, computed with Eqn. 2, is a sequence of feature vectors z, intended to represent
a text line. Therefore, we may see this module as a soft line segmentation neural network. The
advantages over the neural networks trained for line segmentation [13, 24, 32, 31] are that (i) it works
on the same features as those used for the transcription (multi-task encoder) and (ii) it is trained to
maximize the transcription accuracy (i.e. more closely related to the goal of handwriting recognition
systems, and easily interpretable).

A decoder predicts a character sequence from the feature vectors:

y = Decoder(z) (6)

where z is the concatenation of z(1), z(2), . . . , z(T ). Alternatively, the decoder may be applied to
z(i)s sub-sequences to get y(i)s and y is the concatenation of y(1), y(2), . . . , y(T ).

In the standard MDLSTM architecture of Section 3, the decoder is a simple softmax. However, a
Bidirectional LSTM (BLSTM) decoder could be applied to the collapsed representations. This is
particularly interesting in the proposed model, as the BLSTM would potentially process the whole
paragraph, allowing a modeling of dependencies across text lines.

This model can be trained with CTC. If the line breaks are known in the transcript, the CTC could
be applied to the segments corresponding to each line prediction. Otherwise, one can directly apply
CTC to the whole paragraph. In this work, we opted for that strategy, with a BLSTM decoder applied
to the concatenation of all collapsing steps.

5 Experiments

5.1 Experimental Setup

We carried out the experiments on two public databases. The IAM database [29] is made of
handwritten English texts copied from the LOB corpus. There are 747 documents (6,482 lines) in the
training set, 116 documents (976 lines) in the validation set and 336 documents (2,915 lines) in the
test set. The Rimes database [1] contains handwritten letters in French. The data consist of a training
set of 1,500 paragraphs (11,333 lines), and a test set of 100 paragraphs (778 lines). We held out the
last 100 paragraphs of the training set as a validation set.

The networks have the following architecture. The encoder first computes a 2x2 tiling of the input
and alternate MDLSTM layers of 4, 20 and 100 units and 2x4 convolutions of 12 and 32 filters
with no overlap. The last layer is a linear layer with 80 outputs for IAM and 102 for Rimes. The
attention network is an MDLSTM network with 2x16 units in each direction followed by a linear
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layer with one output, and a softmax on columns (Eqn. 5). The decoder is a BLSTM network with 256
units. Dropout is applied after each LSTM layer [33]. The networks are trained with RMSProp [36]
with a base learning rate of 0.001 and mini-batches of 8 examples, to minimize the CTC loss over
entire paragraphs. The measure of performance is the Character (or Word) Error Rate (CER%),
corresponding to the edit distance between the recognition and ground-truth, normalized by the
number of ground-truth characters.

5.2 Impact of the Decoder

In our model, the weighted collapse method is followed by a BLSTM decoder. In this experiment,
we compare the baseline system (standard collapse followed by a softmax) with the proposed model.
In order to dissociate the impact of the weighted collapse from that of the BLSTM decoder, we also
trained an intermediate architecture with a BLSTM layer after the standard collapse, but still limited
to text lines.

Table 1: Character Error Rates (%) of CTC-trained RNNs on 150 dpi images. The Standard models
are trained on segmented lines. The Attention models are trained on paragraphs.

Collapse Decoder IAM Rimes
Standard Softmax 8.4 4.9
Standard BLSTM + Softmax 7.5 4.8
Attention BLSTM + Softmax 6.8 2.5

The character error rates (CER%) on the validation sets are reported in Table 1 for 150dpi images.
We observe that the proposed model outperforms the baseline by a large margin (relative 20%
improvement on IAM, 50% on Rimes), and that the gain may be attributed to both the BLSTM
decoder, and the attention mechanism.

5.3 Impact of Line Segmentation

Our model performs an implicit line segmentation to transcribe paragraphs. The baseline considered
in the previous section is somehow cheating, because it was evaluated on the ground-truth line
segmentation. In this experiment, we add to the comparison the baseline models evaluated in a real
scenario where they are applied to the result of an automatic line segmentation algorithm.

Table 2: Character Error Rates (%) of CTC-trained RNNs on ground-truth lines and automatic
segmentation of paragraphs with different resolutions. The last column contains the error rate of the
attention-based model presented in this work, without an explicit line segmentation.

Line segmentation
Database Resolution GroundTruth Projection Shredding Energy This work

IAM 150 dpi 8.4 15.5 9.3 10.2 6.8
300 dpi 6.6 13.8 7.5 7.9 4.9

Rimes 150 dpi 4.8 6.3 5.9 8.2 2.8
300 dpi 3.6 5.0 4.5 6.6 2.5

In Table 2, we report the CERs obtained with the ground-truth line positions, with three different
segmentation algorithms, and with our end-to-end system, on the validation sets of both databases with
different input resolutions. We see that applying the baseline networks on automatic segmentations
increases the error rates, by an absolute 1% in the best case. We also observe that the models are
better with higher resolutions.

Our models yield better performance than methods based on an explicit and automatic line segmenta-
tion, and comparable or better results than with ground-truth segmentation, even with a resolution
divided by two. Two factors may explain why our model yields better results than the line recognition
from ground-truth segmentation. First, the ground-truth line positions are bounding boxes that may
include some parts of adjacent lines and include irrelevant data, whereas the attention model will
focus on smaller areas. But the main reason is probably that the proposed model includes a BLSTM
operating on the whole paragraph, which may capture linguistic dependencies across text lines.
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In Figure 3, we display a visualisation of the implicit line segmentation computed by the network.
Each color corresponds to one step of the iterative weighted collapse. On the images, the color
represents the weights given by the attention network (the transparency encodes their intensity). The
texts below are the predicted transcriptions, and chunks are colored according to the corresponding
timestep of the attention mechanism.

Figure 3: Transcription of full paragraphs of text and implicit line segmentation learnt by the network
on IAM (left) and Rimes (right). Best viewed in color.

5.4 Comparison to Published Results

In this section, we also compute the word error rates (WER%) and evaluate our models on the test
sets to compare the proposed approach to existing systems. For IAM, we applied a 3-gram language
model with a lexicon of 50,000 words, trained on the LOB, Brown and Wellington corpora.1 This
language model has a perplexity of 298 and out-of-vocabulary rate of 4.3% on the validation set (329
and 3.7% on the test set).

The results are presented in Table 3 for different input resolutions. When comparing the error rates, it
is important to note that all systems in the literature used an explicit (ground-truth) line segmentation
and a language model. [14, 26, 30] used a hybrid character/word language model to tackle the issue
of out-of-vocabulary words. Moreover, all systems except [30, 33] carefully pre-processed the line
image (e.g. corrected the slant or skew, normalized the height, ...), whereas we just normalized the
pixel values to zero mean and unit variance. Finally, [5] is a combination of four systems.

Table 3: Final results on Rimes and IAM databases

Rimes IAM
WER% CER% WER% CER%

150 dpi no language model 13.6 3.2 29.5 10.1
with language model 16.6 6.5

300 dpi no language model 12.6 2.9 24.6 7.9
with language model 16.4 5.5

Bluche, 2015 [5] 11.2 3.5 10.9 4.4
Doetsch et al., 2014 [14] 12.9 4.3 12.2 4.7

Kozielski et al. 2013 [26] 13.7 4.6 13.3 5.1
Pham et al., 2014 [33] 12.3 3.3 13.6 5.1

Messina & Kermorvant, 2014 [30] 13.3 - 19.1 -

1 The parts of the LOB corpus used in the validation and evaluation sets were removed.
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On Rimes, the system applied to 150 dpi images already outperforms the state of the art in CER%,
while being competitive in terms of WER%. The system for 300 dpi images is comparable to the best
single system [33] in WER% with a significantly better CER%.

On IAM, the language model turned out to be quite important, probably because there is more
variability in the language.2 On 150 dpi images, the results are not too far from the state of the art
results. The WER% does not improve much on 300 dpi images, but we get a lower CER%. When
analysing the errors, we noticed that there is a lot of punctuation in IAM, which was often missed by
the attention mechanism. It may happen because punctuation marks are significantly smaller than
characters. With the attention-based collapse and the weighted sum, they will be more easily missed
than with the standard collapse, which gives the same weight to all vertical positions.

6 Discussion

Table 4: Comparison of decoding times of different methods: using ground-truth line information,
with explicit segmentation, with the attention-based method of [6] and with the system presented in
this paper.

Method Processing time (s)
GroundTruth (crop+reco) 0.21± 0.07
Shredding (segment+crop+reco) 0.78± 0.26
Scan, Attend and Read [6] (reco) 21.2± 5.6
This Work (reco) 0.62± 0.14

The proposed model can transcribe complete paragraphs without segmentation and is orders of
magnitude faster that the model of [6] (cf. Table 4). However, the mechanism cannot handle
arbitrary reading orders. Rather, it implements a sort of implicit line segmentation. In the current
implementation, the iterative collapse runs for a fixed number of timesteps. Yet, the model can handle
a variable number of text lines, and, interestingly, the focus is put on interlines in the additional steps.
A more elegant solution should include the prediction of a binary variable indicating when to stop
reading.

Our method was applied to paragraph images, so a document layout analysis is required to detect
those paragraphs before applying the model. Naturally, the next step should be the transcription of
complex documents without an explicit or assumed paragraph extraction. The limitation to paragraphs
is inherent to this system. Indeed, the weighted collapse always outputs sequences corresponding to
the whole width of the encoded image, which, in paragraphs, may correspond to text lines. In order to
switch to full documents, several issues arise. On the one hand, the size of the lines is determined by
the size of the text block. Thus a method should be devised to only select a smaller part of the feature
maps, representing only the considered text line. This is not possible in the presented framework. A
potential solution could come from spatial transformer networks [22], performing a differentiable
crop. On the other hand, training will in practice become more difficult, not only because of the
complexity of the task, but also because the reading order of text blocks in complex documents cannot
be exactly inferred in many cases (even defining arbitrary rules may be tricky).

7 Conclusion

We have presented a model to transcribe full paragraphs of handwritten texts without an explicit
line segmentation. Contrary to classical methods relying on a two-step process (segment, then
recognize), our system directly considers the paragraph image without an elaborated pre-processing,
and outputs the complete transcription. We proposed a simple modification of the collapse layer
in the standard MDLSTM architecture to iteratively focus on single text lines. This implicit line
segmentation is learnt with backpropagation along with the rest of the network to minimize the
CTC error at the paragraph level. We reported error rates comparable to the state of the art on two
public databases. After switching from explicit to implicit character, then word segmentation for
handwriting recognition, we showed that line segmentation can also be learnt inside the transcription
model. The next step towards end-to-end handwriting recognition is now at the full page level.

2 A simple language model yields a perplexity of 18 on Rimes [5].

7



References
[1] E. Augustin, M. Carré, E. Grosicki, J.-M. Brodin, E. Geoffrois, and F. Preteux. RIMES evaluation campaign

for handwritten mail processing. In Proceedings of the Workshop on Frontiers in Handwriting Recognition,
number 1, 2006.

[2] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with visual attention.
arXiv preprint arXiv:1412.7755, 2014.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] Yoshua Bengio, Yann LeCun, Craig Nohl, and Chris Burges. Lerec: A NN/HMM hybrid for on-line
handwriting recognition. Neural Computation, 7(6):1289–1303, 1995.

[5] Théodore Bluche. Deep Neural Networks for Large Vocabulary Handwritten Text Recognition. Theses,
Université Paris Sud - Paris XI, May 2015.

[6] Théodore Bluche, Jérôme Louradour, and Ronaldo Messina. Scan, Attend and Read: End-to-End Hand-
written Paragraph Recognition with MDLSTM Attention. arXiv preprint arXiv:1604.03286, 2016.

[7] Théodore Bluche, Bastien Moysset, and Christopher Kermorvant. Automatic line segmentation and ground-
truth alignment of handwritten documents. In International Conference on Frontiers in Handwriting
Recognition (ICFHR), 2014.

[8] Vicente Bosch, Alejandro Hector Toselli, and Enrique Vidal. Statistical text line analysis in handwritten
documents. In Frontiers in Handwriting Recognition (ICFHR), 2012 International Conference on, pages
201–206. IEEE, 2012.

[9] Sylvie Brunessaux, Patrick Giroux, Bruno Grilhères, Mathieu Manta, Maylis Bodin, Khalid Choukri,
Olivier Galibert, and Juliette Kahn. The Maurdor Project: Improving Automatic Processing of Digital
Documents. In Document Analysis Systems (DAS), 2014 11th IAPR International Workshop on, pages
349–354. IEEE, 2014.

[10] Horst Bunke, Samy Bengio, and Alessandro Vinciarelli. Offline recognition of unconstrained handwritten
texts using hmms and statistical language models. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(6):709–720, 2004.

[11] William Chan, Navdeep Jaitly, Quoc V Le, and Oriol Vinyals. Listen, attend and spell. arXiv preprint
arXiv:1508.01211, 2015.

[12] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio. Attention-
based models for speech recognition. In Advances in Neural Information Processing Systems, pages
577–585, 2015.

[13] Manolis Delakis and Christophe Garcia. text detection with convolutional neural networks. In VISAPP (2),
pages 290–294, 2008.

[14] Patrick Doetsch, Michal Kozielski, and Hermann Ney. Fast and robust training of recurrent neural networks
for offline handwriting recognition. pages –, 2014.

[15] Kunihiko Fukushima. Neural network model for selective attention in visual pattern recognition and
associative recall. Applied Optics, 26(23):4985–4992, 1987.

[16] Basilis Gatos, Georgios Louloudis, Tim Causer, Kris Grint, Veronica Romero, Joan-Andreu Sánchez,
Alejandro Hector Toselli, and Enrique Vidal. Ground-truth production in the transcriptorium project. In
Document Analysis Systems (DAS), 2014 11th IAPR International Workshop on, pages 237–241. IEEE,
2014.

[17] A Graves, S Fernández, F Gomez, and J Schmidhuber. Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks. In International Conference on Machine
learning, pages 369–376, 2006.

[18] A. Graves and J. Schmidhuber. Offline Handwriting Recognition with Multidimensional Recurrent Neural
Networks. In Advances in Neural Information Processing Systems, pages 545–552, 2008.

[19] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.

[20] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. DRAW: A recurrent neural network for
image generation. arXiv preprint arXiv:1502.04623, 2015.

8



[21] David Hebert, Thierry Paquet, and Stephane Nicolas. Continuous crf with multi-scale quantization feature
functions application to structure extraction in old newspaper. In Document Analysis and Recognition
(ICDAR), 2011 International Conference on, pages 493–497. IEEE, 2011.

[22] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Advances in
Neural Information Processing Systems, pages 2008–2016, 2015.

[23] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap: Fully convolutional localization networks for
dense captioning. arXiv preprint arXiv:1511.07571, 2015.

[24] Keechul Jung. Neural network-based text location in color images. Pattern Recognition Letters,
22(14):1503–1515, 2001.

[25] Alfred Kaltenmeier, Torsten Caesar, Joachim M Gloger, and Eberhard Mandler. Sophisticated topology
of hidden Markov models for cursive script recognition. In Document Analysis and Recognition, 1993.,
Proceedings of the Second International Conference on, pages 139–142. IEEE, 1993.

[26] Michal Kozielski, Patrick Doetsch, Hermann Ney, et al. Improvements in RWTH’s System for Off-Line
Handwriting Recognition. In Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on, pages 935–939. IEEE, 2013.

[27] Chen-Yu Lee and Simon Osindero. Recursive recurrent nets with attention modeling for ocr in the wild.
arXiv preprint arXiv:1603.03101, 2016.

[28] Laurence Likforman-Sulem, Abderrazak Zahour, and Bruno Taconet. Text line segmentation of historical
documents: a survey. International Journal of Document Analysis and Recognition (IJDAR), 9(2-4):123–
138, 2007.

[29] U-V Marti and Horst Bunke. The IAM-database: an English sentence database for offline handwriting
recognition. International Journal on Document Analysis and Recognition, 5(1):39–46, 2002.

[30] R. Messina and C. Kermorvant. Surgenerative Finite State Transducer n-gram for Out-Of-Vocabulary Word
Recognition. In 11th IAPR Workshop on Document Analysis Systems (DAS2014), pages 212–216, 2014.

[31] Bastien Moysset, Pierre Adam, Christian Wolf, and Jérôme Louradour. Space displacement localization
neural networks to locate origin points of handwritten text lines in historical documents. In International
Workshop on Historical Document Imaging and Processing (HIP), 2015.

[32] Bastien Moysset, Christopher Kermorvant, Christian Wolf, and Jérôme Louradour. Paragraph text segmen-
tation into lines with recurrent neural networks. In International Conference of Document Analysis and
Recognition (ICDAR), 2015.

[33] Vu Pham, Théodore Bluche, Christopher Kermorvant, and Jérôme Louradour. Dropout improves recurrent
neural networks for handwriting recognition. In 14th International Conference on Frontiers in Handwriting
Recognition (ICFHR2014), pages 285–290, 2014.

[34] Joan Andreu Sánchez, Verónica Romero, Alejandro Toselli, and Enrique Vidal. ICFHR 2014 HTRtS:
Handwritten Text Recognition on tranScriptorium Datasets. In International Conference on Frontiers in
Handwriting Recognition (ICFHR), 2014.

[35] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun. Over-
feat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

[36] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.

[37] A. Tong, M. Przybocki, V. Maergner, and H. El Abed. NIST 2013 Open Handwriting Recognition and
Translation (OpenHaRT13) Evaluation. In 11th IAPR Workshop on Document Analysis Systems (DAS2014),
2014.

[38] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and Yoshua
Bengio. Show, attend and tell: Neural image caption generation with visual attention. arXiv preprint
arXiv:1502.03044, 2015.

9


	Introduction
	Related Work
	Handwriting Recognition with MDLSTM and CTC
	An Iterative Weighted Collapse for End-to-End Handwriting Recognition
	Experiments
	Experimental Setup
	Impact of the Decoder
	Impact of Line Segmentation
	Comparison to Published Results

	Discussion
	Conclusion

