
Dropout improves Recurrent Neural Networks for
Handwriting Recognition

Vu Pham∗†, Théodore Bluche∗‡, Christopher Kermorvant∗, and Jérôme Louradour∗
∗ A2iA, 39 rue de la Bienfaisance, 75008 - Paris - France

† SUTD, 20 Dover Drive, Singapore
‡LIMSI CNRS, Spoken Language Processing Group, Orsay, France

Abstract—Recurrent neural networks (RNNs) with Long
Short-Term memory cells currently hold the best known results
in unconstrained handwriting recognition. We show that their
performance can be greatly improved using dropout - a recently
proposed regularization method for deep architectures. While
previous works showed that dropout gave superior performance
in the context of convolutional networks, it had never been
applied to RNNs. In our approach, dropout is carefully used in
the network so that it does not affect the recurrent connections,
hence the power of RNNs in modeling sequences is preserved.
Extensive experiments on a broad range of handwritten databases
confirm the effectiveness of dropout on deep architectures even
when the network mainly consists of recurrent and shared
connections.

Keywords-Recurrent Neural Networks, Dropout, Handwriting
Recognition

I. INTRODUCTION

Unconstrained offline handwriting recognition is the prob-

lem of recognizing long sequences of text when only an

image of the text is available. The only constraint in such a

setting is that the text is written in a given language. Usually

a pre-processing module is used to extract image snippets,

each contains one single word or line, which are then fed

into the recognizer. A handwriting recognizer, therefore, is

in charge of recognizing one single line of text at a time.

Generally, such a recognizer should be able to detect the

correlation between characters in the sequence, so it has more

information about the local context and presumably provides

better performance. Readers are referred to [1] for an extensive

review of handwriting recognition systems.

Early works typically use a Hidden Markov Model (HMM)

[2] or an HMM-neural network hybrid system [3], [4] for

the recognizer. However, the hidden states of HMMs follow

a first-order Markov chain, hence they cannot handle long-

term dependencies in sequences. Moreover, at each time step,

HMMs can only select one hidden state, hence an HMM

with n hidden states can typically carry only log (n) bits of

information about its dynamics [5].

Recurrent neural networks (RNNs) do not have such lim-

itations and were shown to be very effective in sequence

modeling. With their recurrent connections, RNNs can, in

principle, store representations of past input events in form

of activations, allowing them to model long sequences with

complex structures. RNNs are inherently deep in time and can

have many layers, both make training parameters a difficult

optimization problem. The burden of exploding and vanishing

gradient was the reason for the lack of practical applications

of RNNs until recently [6], [7].

Lately, an advance in designing RNNs was proposed,

namely Long Short-Term Memory (LSTM) cells. LSTM are

carefully designed recurrent neurons which gave superior

performance in a wide range of sequence modeling problems.

In fact, RNNs enhanced by LSTM cells [8] won several

important contests [9], [10], [11] and currently hold the best

known results in handwriting recognition.

Meanwhile, in the emerging deep learning movement,

dropout was used to effectively prevent deep neural networks

with lots of parameters from overfitting. It is shown to be

effective with deep convolutional networks [12], [13], [14],

feed-forward networks [15], [16], [17] but, to the best of

our knowledge, has never been applied to RNNs. Moreover,

dropout was typically applied only at fully-connected layers

[12], [18], even in convolutional networks [13]. In this work,

we show that dropout can also be used in RNNs at some

certain layers which are not necessarily fully-connected. The

choice of applying dropout is carefully made so that it does

not affect the recurrent connections, therefore without reducing

the ability of RNNs to model long sequences.

Due to the impressive performance of dropout, some ex-

tensions of this technique were proposed, including DropCon-

nect [18], Maxout networks [19], and an approximate approach

for fast training with dropout [20]. In [18], a theoretical

generalization bound of dropout was also derived. In this work,

we only consider the original idea of dropout [12].

Section II presents the RNN architecture designed for

handwriting recognition. Dropout is then adapted for this

architecture as described in Section III. Experimental results

are given and analyzed in Section IV, while the last section is

dedicated for conclusions.

II. RECURRENT NEURAL NETWORKS FOR HANDWRITING

RECOGNITION

The recognition system considered in this work is depicted

in Fig. 1. The input image is divided into blocks of size

2 × 2 and fed into four LSTM layers which scan the input

in different directions indicated by corresponding arrows. The

output of each LSTM layer is separately fed into convolutional

layers of 6 features with filter size 2 × 4. This convolutional

layer is applied without overlaping nor biases. It can be

2014 14th International Conference on Frontiers in Handwriting Recognition

2167-6445/14 $31.00 © 2014 IEEE

DOI 10.1109/ICFHR.2014.55

285

�
�

�������	
��
�������	�
�	

������
��
�������	

����������
�
������	�
�
��
����	�
�
�����
���	�

�
�

�

��	����
�� ������
��
���������

����������
�
������	�
�
��
����	�
�
�����
���	��

��	����
�� ������
��
���������

���������������
�����
���	�

��	�
���
���

�� ��

��

�� �

� �

�����
�����	������

 !
�������

�������
�������

Fig. 1. The Recurrent Neural Network considered in this paper, with the places where dropout can be applied.

seen as a subsampling step, with trainable weights rather

than a deterministic subsampling function. The activations of

4 convolutional layers are then summed element-wise and

squashed by the hyperbolic tangent (tanh) function. This pro-

cess is repeated twice with different filter sizes and numbers of

features, and the top-most layer is fully-connected instead of

convolutional. The final activations are summed vertically and

fed into the softmax layer. The output of softmax is processed

by Connectionist Temporal Classification (CTC) [21].

This architecture was proposed in [22], but we have adapted

the filter sizes for input images at 300 dpi. There are two

key components enabling this architecture to give superior

performance:

• Multidirectional LSTM layers [23]. LSTM cells are care-

fully designed recurrent neurons with multiplicative gates

to store information over long periods and forget when

needed. Four LSTM layers are applied in parallel, each

one with a particular scaning direction. In this way the

network has the possibility to exploit all available context.

• CTC is an elegant approach for computing the Negative

Log-likelihood for sequences, so the whole architecture

is trainable without having to explicitly align each input

image with the corresponding target sequence.

In fact, this architecture was featured in our winning entry

of the Arabic handwriting recognition competition OpenHaRT

2013 [11], where such a RNN was used as the optical model in

the recognition system. In this paper, we further improve the

performance of this optical model using dropout as described

in the next section.

III. DROPOUT FOR RECURRENT NEURAL NETWORKS

Originally proposed in [12], dropout involves randomly

removing some hidden units in a neural network during

training but keeping all of them during testing. More formally,

consider a layer with d units and let h be a d-dimensional

vector of their activations. When dropout with probability p
is applied at this layer, some activations in h are dropped:

htrain = m� h, where � is the element-wise product, and m
is a binary mask vector of size d with each element drawn

independently from mj ∼ Bernoulli (p). During testing, all

dropout

Fig. 2. Dropout is only applied to feed-forward connections in RNNs. The
recurrent connections are kept untouched. This depicts one recurrent layer
(hi) with its inputs (xi), and an output layer (yi) which can comprise full or
shared connections. The network is unrolled in 3 time steps to clearly show
the recurrent connections.

units are retained but their activations are weighted by p:

htest = ph. Dropout involves a hyper-parameter p, for which

a common value is p = 0.5.

We believe that random dropout should not affect the

recurrent connections in order to conserve the ability of RNNs

to model sequences. This idea is illustrated in Fig. 2, where

dropout is applied only to feed-forward connections and not

to recurrent connections. With this construction, dropout can

be seen as a way to combine high-level features learned

by recurrent layers. Practically, we implemeted dropout as a

separated layer whose output is identical to its input, except

at dropped locations (mj = 0). With this implementation,

dropout can be used at any stage in a deep architecture,

providing more flexibility in designing the network.

Another appealing method similar to dropout is DropCon-
nect [18], which drops the connections, instead of the hidden

units values. However DropConnect was designed for fully-

connected layers, where it makes sense to drop the entries

of the weight matrix. In convolutional layers, however, the

weights are shared, so there are only a few actual weights.

If DropConnect is applied at a convolutional layer with k
weights, it can sample at most 2k different models during train-

ing. In contrast, our approach drops the input of convolutional

layers. Since the number of inputs is typically much greater

than the number of weights in convolutional layers, dropout

in our approach samples from a bigger pool of models, and

286

presumably gives superior performance.

In [24], dropout is used to regularize a bi-directional RNN,

but the network has only one hidden layer, there are no LSTM

cells involved, and there is no detail on how to apply dropout

to the RNN. In [14], dropout is used in a convolutional

neural network but with a smaller dropout rate because the

typical value p = 0.5 might slow down the convergence and

lead to higher error rate. In this paper, our architecture has

both covolutional layers and recurrent layers. The network is

significantly deep, and we still find the typical dropout rate

p = 0.5 yielding superior performance. This improvement

can be attributed to the way we keep recurrent connections

untouched when applying dropout.

Note that previous works about dropout seem to favor

rectified linear units (ReLU) [13] over tanh or sigmoid for

the network nonlinearity since it provides better covergence

rate. In our experiments, however, we find out that ReLU can

not give good performance in LSTM cells, hence we keep tanh
for the LSTM cells and sigmoid for the gates.

IV. EXPERIMENTS

A. Experimental setup

Three handwriting datasets are used to evaluate our sys-

tem: Rimes [25], IAM [26] and OpenHaRT [27] containing

handwritten French, English and Arabic text, respectively. We

split the databases into disjoint subsets to train, validate and

evaluate our models. The size of the selected datasets are

given in Table I. All the images used in these experiments

consist of either isolated words (Section IV-B) or isolated

lines (Section IV-C). They are all scanned at (or scaled to)

300 dpi, and we recall that the network architecture presented

in section II is designed to fit with this resolution.

TABLE I
THE NUMBER OF ISOLATED WORDS AND LINES IN THE DATASETS USED

IN THIS WORK.

Rimes IAM OpenHaRT
words lines words lines words lines

Training 44 197 1 400 80 421 6 482 524 196 1 747 676
Validation 7 542 100 16 770 976 57 462 9 525
Evaluation 7 464 100 17 991 2 915 48 308 8 483
1 For OpenHaRT, only a subset of the full available data was used in the experiments

on isolated word.

To assess the performance of our system, we measure the

Character Error Rate (CER) and Word Error Rate (WER).

The CER is computed by normalizing the total edit distance

between every pair of target and recognized sequences of

characters (including the white spaces for line recognition).

The WER is simply the classification error rate in the case of

isolated word recognition, and is a normalized edit distance

between sequences of words in the case of line recognition.

The RNN optical models are trained by online stochastic

gradient descent with a fixed learning rate of 10−3. The objec-

tive function is the Negative Log-Likelihood (NLL) computed

by CTC. All the weights are initialized by sampling from a

Gaussian distribution with zero mean and a standard deviation

of 10−2. A simple early stopping strategy is employed and no

other regularization methods than dropout were used. When

dropout is enabled, we always use the dropout probability

p = 0.5.

B. Isolated Word Recognition

1) Dropout at the topmost LSTM layer: In this set of

experiments, we first apply dropout at the topmost LSTM

layer. Since there are 50 features at this layer, dropout can

sample from a great number of networks. Moreover, since the

inputs of this layer have smaller sizes than those of lower

layers due to subsampling, dropout at this layer will not take

too much time during training.

Previous work [28] suggests that dropout is most helpful

when the size of the model is relatively big, and the network

suffers from overfitting. One way to control the size of

the network is to change the number of hidden features in

the recurrent layers. While the baseline architecture has 50

features at the topmost layer, we vary it among 30, 50, 100

and 200. All other parameters are kept fixed, the network is

then trained with and without dropout.

For each setting and dataset, the model with highest

performance on validation set is selected and evaluated on

corresponding test set. The results are given in Table II.

It can be seen that dropout works very well on IAM and

Rimes where it significantly improves the performance by

10 − 20% regardless of the number of topmost hidden units.

On OpenHaRT, dropout also helps with 50, 100 or 200 units,

but hurts the performance with 30 units, most likely because

the model with 30 units is underfitted.

Fig. 3 depicts the convergence curves of various RNN

architectures trained on the three datasets when dropout is dis-

abled or enabled. In all experiments, convergence curves show

that dropout is very effective in preventing overfitting. When

dropout is disabled, the RNNs clearly suffer from overfitting

as their NLL on the validation dataset increases after a certain

number of iterations. When dropout is enabled, the networks

are better regularized and can achieve higher performance on

validation set at the end. Especially for OpenHaRT, since its

training and validation sets are much larger than IAM and

Rimes, 30 hidden units are inadequate and training takes a

long time to converge. With 200 units and no dropout, it seems

to be overfitted. However when dropout is enabled, 200 units

give very good performance.

2) Dropout at multiple layers: Now we explore the possi-

bilities of using dropout also at other layers than the topmost

LSTM layer. In our architecture, there are 3 LSTM layers,

hence we tried applying dropout at the topmost, the top two

and all the three LSTM layers.

Normally when dropout is applied at any layer, we double

the number of LSTM units at that layer. This is to keep the

same number of active hidden units (on average) when using

dropout with p = 0.5 as in the baseline where all hidden units

are active. We remind that the baseline architecture consists of

LSTM layers with 2, 10 and 50 units, so it would correspond to

an architecture of 4, 20 and 100 units when dropout is applied

at every layer. Since most of free parameters of the networks

287

TABLE II
EVALUATION RESULTS OF WORD RECOGNITION, WITH AND WITHOUT

DROPOUT AT THE TOPMOST LSTM HIDDEN LAYER

topmost Dropout Rimes IAM OpenHaRT
LSTM cells on top CER WER CER WER CER WER

30 No 14.72 42.03 20.07 42.40 12.80 37.44
50 15.11 42.62 21.12 43.92 12.89 37.50

100 15.79 44.37 21.87 43.82 12.48 36.50
200 14.68 42.07 22.23 44.83 13.14 37.65

30 Yes 12.33 37.12 18.62 39.61 15.68 43.09
50 12.17 36.03 18.45 39.58 12.87 36.56

100 12.20 36.03 18.62 39.48 11.50 33.71
200 13.24 38.36 19.72 41.32 10.97 32.64

Bold numbers indicate the best results obtained for a given database and a given
configuration.

TABLE III
EVALUATION RESULTS OF WORD RECOGNITION, WITH DROPOUT AT

MULTIPLE LAYERS

LSTM # layers Rimes IAM OpenHaRT
cells with dropout CER WER CER WER CER WER
2, 10, 50 15.11 42.62 21.12 43.92 12.89 37.50
2, 10, 100 15.79 44.37 21.87 43.82 12.48 36.50
2, 20, 50 0 13.49 39.42 20.67 42.20 11.32 33.96
2, 20, 100 13.64 39.86 19.79 41.22 11.15 33.55
4, 20, 50 14.48 41.65 19.67 41.15 10.93 32.84
4, 20, 100 14.83 42.28 19.46 41.47 11.07 33.09

2, 10, 50 1 12.17 36.03 18.45 39.58 12.87 36.56
2, 10, 100 (topmost) 12.20 36.03 18.62 39.48 11.50 33.71

2, 20, 50 2 8.95 28.70 14.52 32.32 10.48 31.45
2, 20, 100 (top) 9.29 28.98 15.06 32.96 9.17 28.17
4, 20, 50 3 8.62 27.01 13.92 31.48 11.21 33.11
4, 20, 100 9.98 30.63 14.02 31.44 9.77 29.58

concentrate at the top layers, doubling the last LSTM layer

almost doubles the number of free parameters. Therefore we

also have several experiments where we keep the last LSTM

layer at 50 units with dropout. Besides, in order to avoid

favouring the models trained with dropout because they have

greater capacity, we also test those big architectures without

dropout.

Their performance are reported in Table III. Since we double

the size of LSTM layers, the modeling power of the RNNs is

increased. Without dropout, the RNNs with more features at

lower layers generally obtain higher performance. However we

observed overfitting on Rimes when we use 4 and 20 features

at the lowest LSTM layers. This makes sense because Rimes

is the smallest of the three datasets. With dropout, CER and

WER decrease by almost 30-40% on a relative basis. We found

that dropout at 3 LSTM layers is generally helpful, however

the training time is significantly longer both in term of the

number of epochs before convergence and the CPU time for

each epoch.

C. Line Recognition with Lexical Constraints and Language
Modeling

Note that the results presented in Table III can not be di-

rectly compared to state-of-the-art results previously published

on the same databases [29], [11], since the RNNs only output

unconstrained sequences of characters. A complete system

for large vocabulary handwriting text recognition includes a

lexicon and a language model, which greatly decrease the

error rate by inducing lexical constraints and rescoring the

hypotheses produced by the optical model.

In order to compare our approach to existing results, we

trained again the best RNNs for each database, with and

without dropout, on lines of text. The whitespaces in the

annotations are also considered as targets for training.

Concretely, we build a hybrid HMM/RNN model. There is a

one-state HMM for each label (character, whitespace, and the

blank symbol of CTC [21]), which has a transition to itself and

an outgoing transition with the same probability. The emission

probabilities are obtained by transforming the posterior proba-

bilities given by the RNNs into pseudo-likelihood. Specifically,

the posteriors p(s|x) are divided by the priors p(s), scaled by

some factor κ :
p(s|x)
p(s)κ

, where s is the HMM state, i.e. a

character, a blank, or a whitespace, and x is the input. The

priors p(s) are estimated on the training set.

We include the lexical contraints (vocabulary and language

model) in the decoding phase as a Finite-State Transducer

(FST), which is the decoding graph in which we inject

the RNN predictions. The method to create an FST that is

compatible with the RNN outputs is described in [11]. The

whitespaces are treated as an optional word separator in the

lexicon. The HMM is also represented as an FST H and is

composed with the lexicon FST L, and the language model

G.

The final graph HLG is the decoding graph in which we

search the best sequence of words Ŵ

Ŵ = argmax
W

[ω log p(X|W) + log p(W) + |W| logWIP]

where X is the image, p(X|W) are the pseudo-likelihoods,

p(W) is given by the language model, ω and WIP are

the optical scaling factor – balancing the importance of the

optical model and the language model – and the word insertion

penalty. These parameters, along with the prior scaling factor

κ, have been tuned independently for each database on its

validation set.

For IAM, we applied a 3-gram language model trained on

the LOB, Brown and Wellington corpora. The passages of the

LOB corpus appearing in the validation and evaluation sets

were removed prior to LM training. We limited the vocabulary

to the 50k most frequent words. The resulting model has a

perplexity of 298 and OOV rate of 4.3% on the validation set

(329 and 3.7% on the evaluation set).

For Rimes, we used a vocabulary made of 12k words from

the training set. We built a 4-gram language model with mod-

ified Kneser-Ney discounting from the training annotations.

The language model has a perplexity of 18 and OOV rate of

2.6% on the evaluation set.

For OpenHaRT, we selected a 95k words vocabulary con-

taining all the words of the training set. We trained a 3-

gram language model on the training set annotations, with

interpolated Kneser-Ney smoothing. The language model has

288

TABLE IV
RESULTS ON RIMES

Valid. Eval.
WER CER WER CER

MDLSTM-RNN 32.6 8.1 35.4 8.9
+ dropout 25.4 5.9 28.5 6.8
+ Vocab&LM 14.0 3.7 12.6 3.5

+ dropout 13.1 3.3 12.3 3.3
Messina et al. [30] - - 13.3 -

Kozielski et al. [29] - - 13.7 4.6
Messina et al. [30] - - 14.6 -

Menasri et al. [9] - - 15.2 7.2

TABLE V
RESULTS ON IAM

Valid. Eval.
WER CER WER CER

MDLSTM-RNN 36.5 10.4 43.9 14.4
+ dropout 27.3 7.4 35.1 10.8
+ Vocab&LM 12.1 4.2 15.9 6.3

+ dropout 11.2 3.7 13.6 5.1
Kozielski et al. [29] 9.5 2.7 13.3 5.1
Kozielski et al. [29] 11.9 3.2 - -

Espana et al. [31] 19.0 - 22.4 9.8
Graves et al. [32] - - 25.9 18.2

Bertolami et al. [33] 26.8 - 32.8 -
Dreuw et al. [34] 22.7 7.7 32.9 12.4

TABLE VI
RESULTS ON OPENHART

Valid. Eval.
WER CER WER CER

* MDLSTM-RNN 31.0 7.2 34.7 8.4
* + dropout 27.8 6.4 30.3 7.3

+ Vocab&LM 8.3 3.8 18.6 4.9
+ dropout 8.2 3.8 18.0 4.7

Bluche et al. [11] - - 23.3 -
Bluche et al. [11] - - 25.0 -

Kozielski et al. [35] - - 25.8 10.7

* The error rates in the first 2 lines are computed
from the decomposition into presentation forms
and are not directly comparable to the remaining of
the table.

TABLE VII
NORM OF THE WEIGHTS, FOR DIFFERENTLY TRAINED RNNS.

Rimes IAM OpenHaRT
Baseline Dropout Baseline Dropout Baseline Dropout

LSTM L1-norm 0.162 0.213 0.181 0.220 0.259 0.307
weights L2-norm 0.200 0.263 0.225 0.273 0.322 0.382

Classif. L1-norm 0.152 0.097 0.188 0.113 0.277 0.175
weights L2-norm 0.193 0.120 0.238 0.139 0.353 0.215

The first 2 lines correspond to weights in the topmost LSTM layer (before
dropout, if any) and the last 2 lines correspond to classification weights in topmost
linear layer (after dropout, if any).

� �� �� �� �� �� ��
�
	

��
��
��
��

�
�

��
�

� �� �� �� �� �� ��
��
�������
�
��

��
��
��
��
��
��
��

�
��

��
�

��
�������
� ����
�� ��"
��
�#�$ ��
��
��%� ��
���
���
��
& ��
�%�����
���
& ��
�%�����
���
& ��
�%�����

Fig. 3. Convergence Curves on OpenHaRT. Plain (resp. dashed) curves show
the costs on the validation (resp. training) dataset.

a perplexity of 1162 and OOV rate of 6.8% on the evaluation

set.
The results are presented in Tables IV (Rimes), V (IAM)

and VI (OpenHaRT). On the first two rows, we present the

error rates of the RNNs alone, without any lexical constraint.

It can be seen that dropout gives from 7 to 27% relative

improvement. The third rows present the error rates when

adding lexical constraints without dropout. In this case, only

valid sequences of characters are outputed, and the relative im-

provement in CER over the systems without lexical constraints

is more than 40%. On the 4th row, when dropout and lexical

constraints are both enabled, dropout achieves 5.7% (Rimes),

19.0% (IAM) and 4.1% (OpenHaRT) relative improvement in

CER, and 2.4% (Rimes), 14.5% (IAM) and 3.2% (OpenHaRT)

relative improvement in WER. Using a single model and

closed vocabulary, our systems outperform the best published

results for all databases. Note that on the 5th line of Table V,

the system presented in [29] adopts an open-vocabulary ap-

proach and can recognize out-of-vocabulary words, which can

not be directly compared to our models.

D. Effects of dropout on the Recurrent Neural Networks
In order to better understand the behaviour of dropout in

training RNNs, we analyzed the distribution of the network

weights and the intermediate activations. Table VII shows the

L1 and L2 norm of the weights of LSTM gates and cells in

the topmost LSTM layer (referred to as ”LSTM weights”),

and the weights between the topmost LSTM layer and the

softmax layer (”Classification weights”). It is noticeable that

the classification weights are smaller when dropout is enabled.

We did not use any other regularization method, but dropout
seems to have similar regularization effects as L1 or L2 weight
decay. The nice difference is that the hyper-parameter p of

dropout is much less tricky to tune than those of weight decay.

On the other hand, the LSTM weights tend to be higher

with dropout, and further analysis of the intermediate activa-

tions shows that the distribution of LSTM activations have

a wider spread. This side effect can be partly explained

by the hypothesis that dropout encourages the units to emit
stronger activations. Since some units were randomly dropped

during training, stronger activations might make the units

more independently helpful, given the complex contexts of

other hidden activations. Furthermore, we checked that the

LSTM activations are not saturated under the effect of dropout.

Keeping unsaturated activations is particularly important when

training RNN, since it ensures that the error gradient can be

propagated to learn long-term dependencies.

The regularization effect of dropout is certain when we

look into the learning curves given in Fig. 3, where it shows

how overfitting can be greatly reduced. The gain of dropout

becomes highly significant when the network gets relatively

bigger with respect to the dataset.

V. CONCLUSION

We presented how dropout can work with both recurrent

and convolutional layers in a deep network architecture. The

word recognition networks with dropout at the topmost layer

significantly reduces the CER and WER by 10-20%, and the

performance can be further improved by 30-40% if dropout

is applied at multiple LSTM layers. The experiments on

289

complete line recognition also showed that dropout always

improved the error rates, whether the RNNs were used in

isolation, or constrained by a lexicon and a language model.

We report the best known results on Rimes and OpenHaRT

databases. Extensive experiments also provide evidence that

dropout behaves similarly to weight decay, but the dropout

hyper-parameter is much easier to tune than those of weight

decay. It should be noted that although our experiments were

conducted on handwritten datasets, the described technique is

not limited to handwriting recognition, it can be applied as

well in any application of RNNs.

ACKNOWLEDGEMENT

This work was partially funded by the French Grand

Emprunt-Investissements d’Avenir program through the

PACTE project, and was partly achieved as part of the Quaero

Program, funded by OSEO, French State agency for innova-

tion.

REFERENCES

[1] R. Plamondon and S. Srihari, “Online and off-line handwriting recogni-
tion: a comprehensive survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, no. 1, pp. 63–84, 2000.

[2] U. Marti and H. Bunke, “Using a statistical language model to improve
the performance of an HMM-based cursive handwriting recognition
systems,” in Hidden Markov models. River Edge, NJ, USA: World
Scientific Publishing Co., Inc., 2002, pp. 65–90. [Online]. Available:
http://dl.acm.org/citation.cfm?id=505741.505745

[3] S. Marukatat, T. Artires, P. Gallinari, and B. Dorizzi, “Sentence
recognition through hybrid neuro-markovian modeling,” in International
Conference on Document Analysis and Recognition, 2001, pp. 731–735.

[4] A. Senior and A. Robinson, “An off-line cursive handwriting recog-
nition system,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 3, pp. 309–321, 1998.

[5] Z. Ghahramani and M. I. Jordan, “Factorial hidden markov models,”
Mach. Learn., vol. 29, no. 2-3, pp. 245–273, Nov. 1997. [Online].
Available: http://dx.doi.org/10.1023/A:1007425814087

[6] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Networks, vol. 5,
no. 2, pp. 157–166, 1994.

[7] S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based, vol. 6, no. 2, pp. 102–116, 1998.

[8] A. Graves and J. Schmidhuber, “Offline Handwriting Recognition with
Multidimensional Recurrent Neural Networks,” in Advances in Neural
Information Processing Systems, 2008, pp. 545–552.

[9] F. Menasri, J. Louradour, A.-l. Bianne-Bernard, and C. Kermorvant,
“The A2iA French handwriting recognition system at the Rimes-
ICDAR2011 competition,” in Document Recognition and Retrieval Con-
ference, 2012.

[10] T. Nion, F. Menasri, J. Louradour, C. Sibade, T. Retornaz, P.-Y.
Métaireau, and C. Kermorvant, “Handwritten information extraction
from historical census documents,” in International Conference of Doc-
ument Analysis and Recognition, 2013.

[11] T. Bluche, J. Louradour, M. Knibbe, B. Moysset, F. Benzeghiba,
and C. Kermorvant, “The A2iA arabic handwritten text recognition
system at the OpenHaRT2013 evaluation,” in International Workshop
on Document Analysis Systems (DAS), 2014.

[12] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Improving neural networks by preventing co-adaptation of feature
detectors,” CoRR, vol. abs/1207.0580, 2012.

[13] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems, 2012.

[14] L. Deng, O. Abdel-Hamid, and D. Yu, “A deep convolutional neural
network using heterogeneous pooling for trading acoustic invariance
with phonetic confusion,” in International Conference on Acoustics,
Speech and Signal Processing, 2013.

[15] G. Dahl, T. Sainath, and G. Hinton, “Improving deep neural networks
for lvcsr using rectified linear units and dropout,” in International
Conference on Acoustics, Speech and Signal Processing, 2013.

[16] J. Li, X. Wang, and B. Xu, “Understanding the dropout strategy and
analyzing its effectiveness on lvcsr,” in International Conference on
Acoustics, Speech and Signal Processing, 2013.

[17] M. Seltzer, D. Yu, and Y. Wang, “An investigation of deep neural net-
works for noise robust speech recognition,” in International Conference
on Acoustics, Speech and Signal Processing, 2013.

[18] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in International Conference on
Machine Learning, 2013.

[19] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Ben-
gio, “Maxout networks,” in International Conference on Machine Learn-
ing, 2013.

[20] S. I. Wang and C. D. Manning, “Fast dropout training,” in International
Conference on Machine Learning, 2013.

[21] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: Labelling unsegmented sequence data with
recurrent neural networks,” in International Conference on Machine
Learning, 2006, pp. 369–376.

[22] A. Graves and J. Schmidhuber, “Offline handwriting recognition
with multidimensional recurrent neural networks,” in Advances in
Neural Information Processing Systems, D. Koller, D. Schuurmans,
Y. Bengio, L. Bottou, D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou, Eds. MIT Press, 2008, pp. 545–552. [Online]. Available:
http://dblp.uni-trier.de/rec/bibtex/conf/nips/GravesS08

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] G. Mesnil, X. He, L. Deng, and Y. Bengio, “Investigation of recurrent-
neural-network architectures and learning methods for spoken language
understanding,” in Interspeech, 2013.

[25] E. Grosicki and H. ElAbed, “ICDAR 2009 handwriting recognition
competition,” in International Conference on Document Analysis and
Recognition, 2009.

[26] U. Marti and H. Bunke, “The iam-database: an english sentence
database for offline handwriting recognition,” International Journal on
Document Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2002.
[Online]. Available: http://dx.doi.org/10.1007/s100320200071

[27] NIST, “NIST 2013 Open Handwriting Recognition and
Translation Evaluation Plan,” 2013. [Online]. Available:
http://www.nist.gov/itl/iad/mig/upload/OpenHaRT2013 EvalPlan v1-
7.pdf

[28] G. Hinton and G. Dahl, “Dropout: A simple and effective
way to improve neural networks,” in Advances in Neural
Information Processing Systems, 2012. [Online]. Available:
http://videolectures.net/nips2012 hinton networks/

[29] M. Kozielski, P. Doetsch, and H. Ney, “Improvements in RWTH’s
system for off-line handwriting recognition,” in International Conference
on Document Analysis and Recognition, 2013.

[30] R. Messina and C. Kermorvant, “Surgenerative Finite State Transducer
n-gram for Out-Of-Vocabulary Word Recognition,” in International
Workshop on Document Analysis Systems (DAS), 2014.

[31] S. Espana-Boquera, M. J. Castro-Bleda, J. Gorbe-Moya, and F. Zamora-
Martinez, “Improving Offline Handwritten Text Recognition with Hy-
brid HMM/ANN Models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 99, 2010.

[32] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for unconstrained hand-
writing recognition.” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 31, no. 5, pp. 855–68, May 2009.

[33] R. Bertolami and H. Bunke, “Hidden Markov Model Based Ensem-
ble Methods for Offline Handwritten Text Line Recognition,” Pattern
Recognition, 2008.

[34] P. Dreuw, P. Doetsch, C. Plahl, and H. Ney, “Hierarchical Hybrid
MLP/HMM or rather MLP Features for a Discriminatively Trained
Gaussian HMM: A Comparison for Offline Handwriting Recognition,”
in International Conference on Image Processing, 2011.

[35] M. Kozielski, P. Doetsch, M. Hamdani, and H. Ney, “Multilingual off-
line handwriting recognition in real-world images,” in International
Workshop on Document Analysis Systems, Tours, Loire Valley, France,
Apr. 2014.

290

