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Abstract—In this paper, we present a method for the automatic
segmentation and transcript alignment of documents, for which
we only have the transcript at the document level. We consider
several line segmentation hypotheses, and recognition hypotheses
for each segmented line. The recognition is highly constrained
with the document transcript. We formalize the problem in a
weighted finite-state transducer framework. We evaluate how the
constraints help achieve a reasonable result. In particular, we
assess the performance of the system both in terms of segmen-
tation quality and transcript mapping. The main contribution
of this paper is that we jointly find the best segmentation and
transcript mapping that allow to align the image with the whole
ground-truth text. The evaluation is carried out on fully annotated
public databases. Furthermore, we retrieved training material
with this system for the Maurdor evaluation, where the data was
only annotated at the paragraph level. With the automatically
segmented and annotated lines, we record a relative improvement
in Word Error Rate of 35.6%.

I. INTRODUCTION

To train automatic text recognition systems, we need anno-
tated lines of text, which are time consuming – hence expen-
sive – to obtain through manual segmentation and annotation.
Public databases of images of handwritten text, annotated at
the line level are rare. Some examples include the Rimes [1]
and IAM [2] databases. On the other hand, many databases
of documents are available. We can easily retrieve both the
images and the transcript at the document level. Finally, we
observe that in the construction of public databases, people are
often asked to copy a text (e.g. from the LOB corpus for IAM,
from newswire and the web for OpenHaRT). In such cases, the
transcript is already known because defined prior to the actual
handwriting action.

For these reasons, i.e. to relax the annotation effort, and
benefit from the wealth of transcribed documents available on
the web, general methods for retrieving the line segmentation
and annotation would be helpful. Numerous line segmentation
algorithms exist, all having some strengths and weaknesses.
The document transcript, on the other hand, is a reliable source
of information, that puts many constraints on what the lines
content is expected to be. Including those constraints in a
handwritten text recognizer could help to choose the most
suited line segmentation, and to map the transcript to the
segmented lines.

This problem has already been addressed in the literature
(Section II). Proposed methods are either recognition-based
or not. In most papers, the line positions are assumed to
be either known or reliably retrieved. In this paper, we pro-
pose to improve those methods. First, we take into account

several line segmentation hypotheses, rather than the result
of a single segmenter. Then, we include several constraints,
at different level: line ordering, limited search space for the
transcript mapping using a text recognizer, word ordering in
the transcript. We formalize the problem in a weighted Finite-
State Transducer (FST) framework. Each step – segmentation,
recognition, transcript order – is represented as an FST. The
constraints are combined by composition of these FSTs [3],
and the shortest path in the composed FST corresponds to a
line segmentation and a transcript mapping. To the best of our
knowledge, this is the first attempt at jointly finding a good
line segmentation and a good mapping. The proposed method
has several limitations (it cannot cope with transcript errors
or complex page layouts), but we report promising results for
simple tasks and for the Maurdor evaluation [4].

The paper is divided as follows. Section II contains a brief
literature review of related systems. The proposed method is
described in Section III. Then, we present the experimental
setup in Section IV. The results of the evaluation of the method
are summarized in Section V. We propose in Section VI some
perspectives for further improvements, before concluding in
Section VII.

II. RELATION TO PRIOR WORK

The problem of mapping transcript to images has motivated
some research in the past decade, either for the alignment
of Optical Character Recognition (OCR) output with book
content (e.g. in [5], [6]), or for mapping the transcription of
historical documents to segmented words or lines (such as [7],
[8]).

Feng et al. propose in [5] a method for aligning OCR
output with the entire book using Hidden Markov Models
(HMMs). They first align anchor words, which appear only
once in the OCR output, then words between anchors, and
finally characters between matched words. A similar method
using anchor words is presented in [9]. It is a recognition-based
method which computes a distance between a word in a limited
lexicon and a word image with dynamic programming. A post-
processing step is applied to recover from segmentation errors.
Kornfield et al. [8] argue that handwriting recognition systems
are not good enough to help the mapping of text to historical
document images. They match words of the transcript with
automatically segmented word images using Dynamic Time
Warping (DTW).

Other methods are recognition-based. Rothfeder et al. [7]
automatically segment the images into words, and compute
word-level features. Then, they use a linear HMM which
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can cope with segmentation errors to align images with the
transcript. Fischer et al. [10] focus on the alignment of
inaccurate transcriptions using an HMM recognition system.
They extract features from line images, and use a lexicon
containing only the words of the page, and a bigram language
model. In [11], experiments are conducted on the St. Gall
database, where the transcription is known, but the line breaks
are not indicated. They perform Viterbi alignment with HMMs
corresponding to the transcript, including spelling variants,
and model replacement for unknown characters. In [12], the
authors use an FST framework for the ground-truth alignment
in difficult historical documents. They represent the transcript
as an FST with variants, allowing the system to cope with OCR
errors, ligatures, and hyphenation. They extract OCR lattices,
and align them using several approaches.

These methods assume a good line segmentation, although
this problem is not trivial [13]. In our work, we kept several
aspects which seemed interesting, namely the recognition-
based approach, the FST framework, and the concept of forced
alignments. Our contributions lie in the different levels of con-
straints we add, particularly in the segmentation alternatives,
which allow us to rely less on the line segmentation algorithm.
The final segmentation and mapping are jointly found.

III. DESCRIPTION OF THE METHOD

A. Overview

The proposed method takes two inputs: the document
image(s) and transcript. The goal of the method is to retrieve
(i) a correct line segmentation – i.e. all parts of the image
corresponding to the considered transcript should be retrieved
–, and (ii) a good mapping – i.e. all words of the transcript
should be assigned to the corresponding line images.

The method consists of several successive steps. First,
we generate line segmentation hypotheses from the docu-
ment (or paragraph) images. Then, each line hypothesis is
passed through a recognizer to generate hypotheses of word
sequences. This recognition phase can be highly constrained
by the transcript, e.g. in terms of word orderings. Then, seg-
mentation and recognition hypotheses are combined, and more
transcript constraints are added, in order to get a consistent
mapping of transcript words to line images. Finally, we select
the best hypotheses in that constrained set.

We formulate the problem in a weighted FST framework.
This allows to model the sequential aspect of the task, to
represent easily the different hypotheses, and to encode the
constraints and combine them by means of FST composi-
tion [3]. In the following, we present how each step can be
encoded as an FST, and how the FSTs we obtain are composed
to enrich the hypotheses and representations, and add the
constraints. The FSTs are illustrated on Fig. 1.

B. Segmentation

The main risk of the segmentation step is to miss relevant
lines in the image. If this happens, we could not map the
corresponding words of the transcript to that image area.
Hence, we should favor over segmentation, possibly with
perfect recall, even if the precision is low. The later stages
of the approach, in particular the constraints, will ensure that
irrelevant lines are ignored in the final segmentation.

Fig. 2 shows that each segmentation algorithm yields a dif-
ferent result. Each algorithm has its strengths and weaknesses,
or can be more suited to some kinds of documents than others.
For illustration, an evaluation of several line segmentation
algorithms with different metrics has been carried out in [13].
We want to take advantage of the strengths of the different
algorithms. Since irrelevant lines should be ignored with the
constraints, and we want a very high recall, we applied several
segmentation algorithms.

Fig. 2. Different segmentation algorithms yield different results.

The projection-based algorithm computes a smoothed hor-
izontal projection profile. From the profile, we obtain vertical
line boundaries using different thresholds, in a watershed-
like fashion. The horizontal boundaries are calculated by
removal of white pixels on both sides. This method gives a
hierarchical segmentation with several hypotheses. The shred-
ding algorithm is explained in [14]. Finally, a rectangle-based
filtering algorithm is applied, which uses a median filtering
with a rectangular mask. This technique is inspired from [15],
and explained in [13]. This segmentation procedure returns
rectangular bounding boxes for line hypotheses.

The first constraint we can implement concerns the line
ordering. Indeed, we can assume that the transcript order
corresponds to a natural reading order, which, in the image,
would be top-to-bottom, left-to-right (for Latin-script lan-
guages). Therefore, we order the line hypotheses accordingly,
so a line at the bottom of the document cannot be aligned with
the beginning of the transcript in subsequent steps.

The line ordering is represented as a directed acyclic graph.
First the lines are ordered by ascending order of their vertical
position (i.e. the coordinate of the top of the bounding box).
Then, we consider each line in turn, and create a link with a
previous line if the vertical overlap between the boxes is not
bigger than half the height of the smallest, and if there is no
other existing path in the graph between the considered lines.
Lines without predecessor correspond to possible start nodes,
and lines without successor are final nodes. The segmentation
FST (S) is obtained by labeling the arcs with line identifiers
(as input and output symbol). We leave the possibility to skip
irrelevant lines by adding a parallel arc to every line arc with
the line identifier input and a special output symbol #skip.

A skip transition does not have any cost, and the seg-
mentation arcs have a cost σ (which we can see as a line
insertion penalty). This scoring scheme could be improved if
the segmentation algorithms also returned a confidence score
for each line. Note that the graph creation procedure should
be improved to handle images with several columns, side or
margin notes, or complicated layouts in general.

668



Fig. 1. Segmentation S, Recognition R and Transcript T FSTs.

C. Recognition

We run the recognizer on each segmented line individually.
We apply the preprocessing and feature extraction used to
train the recognizer (see Section IV-C and [16]), and we run
the decoder with lexical and grammatical constraints (also
represented as FSTs) to extract FST lattices [17].

The lexicon is limited to the words present in the transcript.
The grammar is the transcript with skips. It is a linear acceptor
corresponding to the transcript with all states being initial and
final states. A valid path is a substring of the transcript. When
we know the line breaks in the transcript, we can put all line
transcripts in parallel and force the recognizer to output full
lines of transcript hypotheses (only the states at line breaks
positions can be initial/final). To some extent, we can view
the recognition step as a sort of forced alignment.

The recognition FST (R) is the union of the lattice FSTs.
We modify the lattice FSTs so that output symbols are rec-
ognized words and input symbols are the line identifiers. The
weights are the unscaled optical model scores. We connect
all lattices start and final states to a shared looping start/end
state. We add a loop to this state with a #skip:#skip
transition and skip cost to allow line hypothesis rejection. The
composed S ◦R FST reads lines and outputs words, and valid
paths correspond to a segmentation and a mapping of transcript
subsequences.

D. Transcript constraint

The transcript FST (T ) is a linear acceptor corresponding
to the sequence of words in the transcript. Moreover, to each
state corresponds a state that absorbs skips: when reading a
skip at position i, move to skip-state i. We can stay in this
state while we keep reading skips, continue in the transcript if
we read word i+1, or transit to the state for the k-th word in
the transcript, if we read word i+ k. In the last case, we can
add a penalty depending on the value of k, to prevent missing
alignment to happen too often. In the limit case of an infinite
penalty, the system is forced to map the whole transcript.

E. Finding the best mapping

When we compose S ◦R with T , we get an FST in which
inputs are lines and the output is the transcript. So a valid path
in this transducer corresponds to a segmentation (when looking
at the input sequence) and to a transcript mapping, respecting
the transcript order (when looking at the output sequence).
The shortest path in S ◦ R ◦ T should correspond to the best
segmentation and annotation of the image given the document
transcript.

IV. EXPERIMENTAL SETUP

A. Evaluation methodology

The previous sections described the general ideas for
jointly finding the best segmentation and mapping of transcript
using recognition. Visual inspection of the results is a good
way to check that we achieve something, but not sufficient,
especially for big databases, to assess the importance of
specific constraints or system components.

We try to solve two problems: annotation and segmentation.
Both are evaluated with well-known metrics, for databases
where ground-truth for line position and annotation is avail-
able. To evaluate the segmentation, we used the ZoneMap met-
ric, developed by the Laboratoire Nationnal de métrologie et
d’Éssais (LNE). The metric first tries to map line hypotheses to
reference positions (this is a sort of bounding box alignment).
It takes into account all possible configurations: matches,
misses, false alarms, splits and merges (in the result tables:
Ma, Mi, FA, S, Me), and a measure of error is calculated.

For the transcript mapping, we are interested in two as-
pects. First, we want the whole transcript to be mapped to the
image. Thus, we can compare the reference transcript with the
obtained mapping. We use the Levenstein algorithm to align
the actual transcript with the mapped one, and record the edits
(corrects, substitutions, deletions, insertions – in result tables:
C, S, D, I) achieving the minimum edit distance, and compute a
Word Error Rate (WER)1. We want the segmented lines to hold
the correct transcript. We also perform this alignment at the
line level, using the bounding box alignments from ZoneMap.

B. Databases

To assess the quality, the advantages and weaknesses of this
system, we will use databases for which we know the ground-
truth for both the line segmentation and the line transcription.
Such databases are publicly available and extensively used in
automatic text recognition problems.

The Rimes database [1] consists of a training set of 1,500
images of handwritten paragraphs in French, and an evaluation
set of 100 images. The IAM database [2] consists of 747
images of handwritten documents in English for training, 116
for validation, and 336 for evaluation. Examples of image are
shown on Fig. 3. We carried out the experiments on parts of
the databases which were not used to train the recognizers.

C. Recognition systems

The recognition systems we used in our experiments, unless
stated otherwise, are HMMs with Gaussian Mixture Models

1Note that this is not a recognition error, but a mapping error

669



Fig. 3. Examples of image from IAM (left) and Rimes (right) databases.
Dotted lines represent the ground-truth segmentation.

(GMMs), trained on the training set of the considered database.
In some experiments, other recognizers are plugged into the
system. They are either GMM-HMMs, or hybrid Bidirec-
tional Long Short-Term Memory Recurrent Neural Networks
(BLSTM-RNN) / HMM. The image pre-processing, feature
extraction, system architectures and training procedures are
explained in [16], for Rimes and IAM. The GMM-HMM
trained on (a subset of French handwritten) Maurdor data is
the same as the one for Rimes, except for the training material.
The data (text and images) used for this evaluation were not
seen during the training of the recognition systems.

V. EVALUATION AND RESULTS

A. How keeping several segmentation alternatives helps?

In this section, we study the choice of segmentation,
and how the segmentation and transcript mapping relate to
each other. We compare different segmentation algorithms
in isolation, the ground-truth segmentation, and keeping all
segmentation alternatives. The results are presented on Table I.
For each segmentation method, we report the segmentation
results without and with transcript mapping, to study the
effect of transcript mapping on segmentation. We observe that
the mapping constraint generally improves ZoneMap error on
IAM, while on Rimes the error increases in most cases. The
mapping also decreases the number of splits and false alarms,
as expected, at the expense of an increase of merges and
misses.

Actually, the transcript constraints allow to skip lines to
deal with over-segmentation. Skipping too many lines results
in an increase of misses, which in turn increases the document-
level mapping deletions, hence the WER. When we keep
several segmentation hypotheses, we reduce the number of
misses, which may explain why we get better results than the
ground-truth segmentation (in terms of mapping) for Rimes.
Note also that when we only want to create training material,
missing a few lines is not a big issue, and the interesting
part is to get the good transcript for retrieved lines (then an
appropriate measure would be the line-level mapping WER
minus the document-level deletions).

When we keep all segmentation hypotheses, the segmenta-
tion and mapping errors are not as good as when we consider
only the best segmenter, but they are close. Since we usually
do not know a priori which segmenter will be best on new
data, keeping all hypotheses seems to be a good compromise.
Table II shows a correlation between segmenter performances

TABLE II. LINE HYPOTHESES PER SEGMENTER BEFORE AND AFTER

MAPPING. THE ERRORS CORRESPOND TO THE SEGMENTATION AND

MAPPING USING EACH ALGORITHM IN ISOLATION.

Shredding Rectangle Profile

Segm. Err. 0.77 6.03 0.87
IAM Line WER 1.24 4.48 0.97

All lines 1,096 (35.9%) 984 (32.2%) 977 (32.0%)
Final lines 642 (62.76%) 93 (9.09%) 288 (28.15%)

Segm. Err. 12.57 5.37 9.51
Rimes Line WER 11.07 2.73 4.45

All lines 805 (29.29%) 777 (28.28%) 1166 (42.43%)
Final lines 323 (39.58%) 181 (22.18%) 977 (31.96%)

and lines kept in the final result on IAM, which is not observed
on Rimes.

Moreover, we studied the effect of knowing the line breaks
in the transcript. We see that the segmentation results are
only very slightly improved. However, the transcript mapping
results are much better for IAM, but not for Rimes, where line
misses and merges increase.

B. The influence of the constraints

We presented constraints that we argued should help solve
this problem. In Table III, we show the results of relaxing
two constraints. In the first experiment, we removed the
composition of the recognition FST with the transcript FST
(we search in S◦R, not in S◦R◦T ). Thus, mapped transcripts
may overlap accross lines (see the insertions and substitutions
in the document-level WER), and may not be in the right order.
For the segmentation, T plays a role in the decrease of splits.

In the second experiment, we removed the grammar in
recognition, i.e. we can only recognize words of the tran-
script but in any order. The order is still implemented by
the transcript FST. We observe a lot of misses, resulting in
deletions of transcript words, probably because the lattices
were not rich enough to include correct word sequences,
hence the corresponding parts were skipped in the annotation.
Thus the transcript order constraint, which implements a semi-
forced alignment, is important for the mapping to take place
efficiently.

C. Do we need a very good recognition system?

In the previous experiments, we used a GMM-HMM
trained on the training set of the same database. We can
expect [16] that the recognizer is good for the new images,
which should have approximately the same distribution as the
training images. For practical usage of this system, we may
not have access to a training set. To simulate this scenario, we
plugged different GMM-HMMs, trained on different databases.
The results are presented on Table IV. For IAM, the GMM-
HMMs trained on French data (Rimes and Maurdor) are not
as good as the in-domain recognizer, yet the error rates are
in reasonable ranges. For Rimes, the GMM-HMM trained on
Maurdor data seems even slightly better, while the recognizers
trained on IAM have a high level of misses/deletions, due to
the absence of modeling of accentuated characters. We also
applied BLSTM-RNNs, which outperform GMM-HMMs in
handwriting recognition (cf. [16], e.g.). Interestingly, for IAM,
the RNN trained on Rimes yields very close results to the one
trained on IAM.
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TABLE I. EFFECT OF THE SEGMENTATION AND LINE BREAK SYMBOLS

Segmentation Document level mapping Line level mapping
IAM Ma Me S Mi FA Err. C S D I WER C S D I WER

Ground-Truth lines + mapping 976 0 0 0 0 0.00 100.00 0.00 0.00 0.00 0.00 99.76 0.00 0.24 0.24 0.47

Shredding segmentation 874 0 102 0 0 1.56 - - - - - - - - - -
+ mapping 965 3 5 0 0 0.77 99.60 0.00 0.40 0.00 0.40 99.18 0.00 0.82 0.42 1.24

Rectangle segmentation 953 0 15 8 0 4.90 - - - - - - - - - -
+ mapping 949 0 0 24 0 6.03 97.27 0.00 2.73 0.00 2.73 96.40 0.00 3.60 0.88 4.48

Profile segmentation 972 0 2 2 0 1.56 - - - - - - - - - -
+ mapping 971 1 0 2 0 0.87 99.75 0.00 0.25 0.00 0.25 99.39 0.00 0.61 0.36 0.97

All segmentations 2 0 974 0 0 282.38 - - - - - - - - - -
+ mapping 947 1 26 0 0 0.90 99.75 0.00 0.25 0.00 0.25 99.26 0.01 0.73 0.48 1.22

Use line breaks 972 0 3 1 0 0.82 99.82 0.00 0.18 0.00 0.18 99.80 0.00 0.20 0.02 0.22

RIMES Ma Me S Mi FA Err. C S D I WER C S D I WER
Ground-Truth lines + mapping 739 16 0 7 0 4.22 97.00 0.00 3.00 0.00 3.00 96.05 0.39 3.56 0.57 4.52

Shredding segmentation 739 4 30 1 1 6.04 - - - - - - - - - -
+ mapping 645 56 0 20 1 12.57 91.15 0.00 8.85 0.00 8.85 89.71 0.66 9.63 0.78 11.07

Rectangle segmentation 771 2 2 1 0 3.68 - - - - - - - - - -
+ mapping 757 6 0 9 0 5.37 98.90 0.00 1.10 0.00 1.10 97.89 0.39 1.72 0.62 2.73

Profile segmentation 574 5 194 0 2 82.03 - - - - - - - - - -
+ mapping 724 16 11 11 1 9.51 97.82 0.00 2.18 0.00 2.18 96.49 0.39 3.12 0.94 4.45

All segmentations 1 0 777 0 3 344.57 - - - - - - - - - -
+ mapping 744 10 10 4 2 7.40 98.95 0.00 1.05 0.00 1.05 97.82 0.39 1.79 0.74 2.93

Use line breaks 723 16 10 13 0 9.06 98.44 0.00 1.56 0.00 1.56 97.62 0.37 2.00 0.44 2.82

TABLE III. CONTRIBUTION OF GENERAL CONSTRAINTS

Segmentation Document level mapping Line level mapping
IAM Ma Me S Mi FA Err. C S D I WER C S D I WER
All constraints 947 1 26 0 0 0.90 99.75 0.00 0.25 0.00 0.25 99.26 0.01 0.73 0.48 1.22

No transcript FST 929 0 46 1 0 0.75 99.55 0.20 0.25 2.76 3.21 99.52 0.20 0.28 2.80 3.28
No order in recognition 171 13 8 771 0 88.85 10.94 0.00 89.06 0.00 89.06 10.01 0.69 89.30 0.25 90.24

RIMES Ma Me S Mi FA Err. C S D I WER C S D I WER
All constraints 744 10 10 4 2 7.40 98.95 0.00 1.05 0.00 1.05 97.82 0.39 1.79 0.74 2.93

No transcript FST 704 2 69 1 1 7.95 97.39 1.01 1.60 4.03 6.63 96.49 1.33 2.18 4.61 8.12
No order in recognition 413 65 2 227 1 44.94 52.35 0.00 47.65 0.00 47.65 51.14 0.53 48.32 0.67 49.53

TABLE IV. INFLUENCE OF THE CHOICE OF RECOGNITION SYSTEM

Segmentation Document level mapping Line level mapping
IAM Ma Me S Mi FA Err. C S D I WER C S D I WER

GMM-HMM IAM 947 1 26 0 0 0.90 99.75 0.00 0.25 0.00 0.25 99.26 0.01 0.73 0.48 1.22
GMM-HMM Rimes 929 0 46 1 0 1.32 99.83 0.00 0.17 0.00 0.17 98.74 0.01 1.25 1.08 2.34

GMM-HMM Maurdor 934 0 42 0 0 0.84 99.87 0.00 0.13 0.00 0.13 98.83 0.03 1.13 1.00 2.17
BLSTM-RNN IAM 973 0 3 0 0 0.80 100.00 0.00 0.00 0.00 0.00 99.94 0.00 0.06 0.06 0.11

BLSTM-RNN Rimes 972 0 4 0 0 1.06 100.00 0.00 0.00 0.00 0.00 99.92 0.00 0.08 0.08 0.16

RIMES Ma Me S Mi FA Err. C S D I WER C S D I WER
GMM-HMM IAM 726 6 16 24 1 8.81 96.45 0.00 3.55 0.00 3.55 95.30 0.39 4.31 0.76 5.46

GMM-HMM Rimes 744 10 10 4 2 7.40 98.95 0.00 1.05 0.00 1.05 97.82 0.39 1.79 0.74 2.93
GMM-HMM Maurdor 740 7 22 2 2 6.38 99.50 0.00 0.50 0.00 0.50 98.28 0.39 1.33 0.83 2.55

BLSTM-RNN IAM 736 4 17 17 1 7.16 97.36 0.00 2.64 0.00 2.64 96.54 0.39 3.07 0.43 3.88
BLSTM-RNN Rimes 752 5 15 1 2 6.11 99.72 0.00 0.28 0.00 0.28 98.85 0.39 0.76 0.48 1.63

The constraints we introduced seem appropriate. Indeed,
even with a recognition system trained on a different distribu-
tion of data achieves good results. It is however important for
the recognizer to model the characters of the new transcripts.
Moreover, a powerful recognition system, such as a BLSTM-
RNN, even if trained on different language and images, im-
proves the performance, which indicates that the recognizer
quality matters.

D. A practical usage: getting training material for the Maur-
dor evaluation

In this section, we present a typical use case for this
kind of system. For the Maurdor evaluation, the training data
were segmented and annotated into text zones, which did not

always correspond to single lines of text. For the English
data, there were 7,357 zones with only one line, and 940
zones containing several lines. The positions of these lines are
not given, but the transcript of the zone contains line break
symbols. From these, we calculated a total number of lines in
the training set of 11,608. We cannot evaluate the results as
in previous sections. Instead, we trained a Multi-Dimensional
(MD)LSTM-RNN with the available training material, and
computed the WER of the complete recognition system on the
test set. The recognition system, including the RNN, lexicon
and language model details, and the line segmentation and
decoding process are thoroughly presented in [4]. The results
are presented in Table V.

First, we trained an MDLSTM-RNN on single-line zones.
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TABLE V. EVOLUTION OF RNN PERFORMANCE AFTER EACH LOOP OF

AUTOMATIC DATA ANNOTATION.

RNN training material # lines / % of max. WER
Initialization: only single-line zones 7,310 / 63.0 54.7%

First pass of transcript mapping 10,570 / 91.1 43.8%

Second pass of transcript mapping 10,925 / 94.1 35.2%

This model is used to segment and map transcript of multi-
line zones. With this method, we retrieved 3,260 new lines for
training. That is a relative increase of 45%. We trained a new
MDLSTM-RNN with the new training set, and the WER drops
from 54.7% to 43.8% (19.9% relative WER improvement). We
perform a new transcript mapping with this RNN. We only
retrieve 355 more lines, but the training material is better.
Indeed, if we train a third MDLSTM-RNN with that data,
we record another 19.2% relative WER improvement on the
test set. This method played a key role in our success in the
evaluation [4].

VI. PERSPECTIVES

The different aspects of the method could be improved.
For the line segmentation FST, a sensible way of assigning
different weights to the hypotheses would be beneficial, e.g. if
the algorithms returned a confidence score. We should also
build the segmentation graph so that complex layouts are
properly handled. The scoring scheme for the recognition (i.e.
replacing the mere recognizer scores) could also be improved
for a better line rejection. Moreover, our method cannot
cope with transcription errors, and it could be implemented.
Finally, we plan to evaluate our method on difficult historical
documents, to compare the results with other publications.

VII. CONCLUSION

We presented a method for the automatic line segmentation
and annotation of documents, when only the image and whole
transcript are available. While taking inspiration from previous
published works, we introduced new constraints. We evaluated
the method on public databases of handwritten text, where
the ground-truth for line positions and transcript is known.
Both the segmentation and the mapping are evaluated with
standard metrics, and the importance of the different aspects
of our system are proved: the ordered multiple segmentation
hypotheses, the transcript contraints on word ordering at line
and document level, the constrained recognition with different
recognizers. The success of the approach is strengthened by
its application in the Maurdor evaluation, where we had to
retrieve the training material from images of multi-line zones.
The performance was underlined by the recognition results of
a MDLSTM-RNN trained with the new material, which were
improved by 35.6% compared with a system using only single-
line zones. This method allowed us to train the systems that
won the Maurdor evaluation.
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