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Abstract—We present an attention-based model for end-to-
end handwriting recognition. Our system does not require any
segmentation of the input paragraph. The model is inspired by
the differentiable attention models presented recently for speech
recognition, image captioning or translation. The main difference
is the implementation of covert and overt attention with a multi-
dimensional LSTM network. Our principal contribution towards
handwriting recognition lies in the automatic transcription with-
out a prior segmentation into lines, which was critical in previous
approaches. Moreover, the system is able to learn the reading
order, enabling it to handle bidirectional scripts such as Arabic.
We carried out experiments on the well-known IAM Database
and report encouraging results which bring hope to perform full
paragraph transcription in the near future.

I. INTRODUCTION

In offline handwriting recognition, the input is a variable-
sized two dimensional image, and the output is a sequence of
characters. The cursive nature of handwriting makes it hard
to first segment characters to recognize them individually.
Methods based on isolated characters were widely used in
the nineties [1], [2], and progressively replaced by the sliding
window approach, in which features are extracted from vertical
frames of the line image [3]. This method transforms the
problem into a sequence to sequence transduction one, while
potentially encoding the two-dimensional nature of the image
by using convolutional neural networks [4] or by defining
relevant features [5].

The recent advances in deep learning and the new architec-
tures allowed to build systems that can handle both the 2D
aspect of the input and the sequential aspect of the prediction.
In particular, Multi-Dimensional Long Short-Term Memory
Recurrent Neural Networks (MDLSTM-RNNSs [6]), associated
with the Connectionist Temporal Classification (CTC [7])
objective function, yield low error rates and became the state-
of-the-art model for handwriting recognition, winning most of
the international evaluations in the field [8], [9], [10].

Up to now, current systems require segmented text lines,
which are rarely readily available in real-world applications. A
complete processing pipeline must therefore rely on automatic
line segmentation algorithms in order to transcribe a document.
We propose a model for multi-line recognition, built upon the
recent “attention-based”” methods, which have proven success-
ful for machine translation [11], image caption generation [12],
[13], or speech recognition [14], [15]. This proposal follows

the longstanding and successful trend of making less and
less segmentation hypotheses for handwriting recognition. Text
recognition state-of-the-art moved from isolated character to
isolated word recognition, then from isolated words to isolated
lines recognition, and we now suggest to go further and
recognize full pages without explicit segmentation.

Our domain of application bears similarities with the image
captioning and speech recognition tasks. We aim at selecting
the relevant parts of an input signal to sequentially generate
text. Like in image captioning, the inputs are images. Similarly
to the speech recognition task, we want to predict a monotonic
and potentially long sequence of characters. In fact, we face
here the challenges of both tasks. We need an attention
mechanism that should look for content at specific location
and in a specific order. Moreover, in multi-line recognition, the
reading order is encapsulated. For example, in Latin scripts, we
have a primary order from left to right, and a secondary order
from top to bottom. We deal here with a complex problem
involving long two-dimensional sequences.

Previous models make sequential predictions over the width
of the image, with an horizontal step size fixed by the model.
They have to resort to tricks to transform the 2D input
image into a character sequence, such as sliding window
and Hidden Markov Models, or collapsing representations
and CTC, making it impossible to handle multiple lines of
text. Those approaches need the text to be already segmented
into lines to work properly. Moreover, the length of the
predicted sequence, the reading order and the positions of
predictions are directly embeded into the architecture. Here,
the sequence generation and extraction of information from the
multi-dimensional input are decoupled. The system may adjust
the number of predictions and arbitrarily and iteratively select
any part of the input. Furthermore, since the model makes no
assumption about the reading order, it could be applied without
any change to languages with different reading order, such as
Arabic (right-to-left, or even bidirectional when mixed with
Latin script) or some Asian languages (top-to-bottom).

The remaining of this paper is organized as follows. In
Section II, we present the baseline MDLSTM-RNN model for
state-of-the-art handwriting recognition. The proposed model
is described in Section III, and is compared to existing
attention-basel models in Section IV. A series of experiments
on the IAM database is reported in Section V. We provide a



short discussion of the model in Section VI, before concluding
the paper in Section VII.

II. HANDWRITING RECOGNITION WITH MDLSTM AND
CTC

Multi-Dimensional Long Short-Term Memory recurrent
neural networks (MDLSTM-RNNs) were introduced in [6]
for unconstrained handwriting recognition. They generalize the
LSTM architecture to multi-dimensional inputs. An overview
of the architecture is shown in Fig. 1. The image is presented to
four MDLSTM layers, one layer for each scanning direction.
The LSTM cell inner state and output are computed from the
states and outputs of previous positions in the horizontal and
vertical directions.

Each LSTM layer is followed by a convolutional layer, with
a step size greater than one, subsampling the feature maps. As
in usual convolutional architectures, the number of features
computed by these layers increases as the size of the feature
maps decreases. At the top of this network, there is one feature
map for each label. A collapsing layer sums the features over
the vertical axis, yielding a sequence of prediction vectors, ef-
fectively delaying the 2D to 1D transformation just before the
character predictions, normalized with a softmax activation.

In order to transform the sequence of 7' predictions into a
sequence of N < T labels, an additionnal non-character — or
blank — label is introduced, and a simple mapping is defined
in order to obtain the final transcription. The connectionist
temporal classification objective (CTC [7]), which considers
all possible labellings of the sequence, is applied to train the
network to recognize a line of text.

The paradigm collapse/CTC already encodes the mono-
tonicity of the prediction sequence, and allows to recognize
characters from 2D images. In this paper, we propose to
go beyond single line recognition, and to directly predict
character sequences, potentially spanning several lines in the
input image. To do this, we replace the collapse and CTC
framework with an attention-based decoder.

III. AN ATTENTION-BASED MODEL FOR END-TO-END
HANDWRITING RECOGNITION

The proposed model comprises an encoder of the 2D image
of text, producing feature maps, and a sequential decoder that
predicts characters from these maps. The decoder proceeds
by combining the feature vectors of the encoded maps into
a single vector, used to update an intermediate state and to
predict the next character in the sequence. The weights of the
linear combination of the feature vectors at every timestep are
predicted by an attention network. In this work the attention
is implemented with a MDLSTM network.

The whole architecture, depicted in Fig. 2, computes a
fully differentiable function, which parameters can be trained
with backpropagation. The optimized cost is the negative log-
likelihood of the correct transcription:

L(T,y) ==Y logp(u|T) (1
t

where 7 is the image, y = y1,--- ,yr is the target character
sequence and p(- |Z) are the outputs of the network.

In the previous architecture (Fig. 1), we can see the
MDLSTM network as a feature extraction module, and
the last collapsing and softmax layers as a way to predict
sequences. Taking inspiration from [12], [15], [13], we keep
the MDLSTM network as an encoder of the image Z into
high-level features:

e;j = Encoder(T) 2)

where (i, j) are coordinates in the feature maps, and we apply
an attention mechanism to read character from them.

The attention mechanism provides a summary of the
encoded image at each timestep in the form of a weighted sum
of feature vectors. The attention network computes a score for
the feature vectors at every position:

2(3,5),t = Attention(e, o1, 5:1) (3)

We refer to a; = {a )} a<i<w, 1<j<m) as the attention
map at time ¢, which computation depends not only on the
encoded image, but also on the previous attention map, and
on a state vector s;—;. The attention map is obtained by a
softmax normalization:
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In the literature of attention-based models, we find two
main kinds of mechanisms. The first one is referred to as
“location-based” attention. The attention network in this case
only predicts the position to attend from the previous attended
position and the current state (e.g. in [16], [17]):

i )¢ = Attention(ay_1,5,_1) )

The second kind of attention is “content-based”. The attention
weights are predicted from the current state, and the encoded
features, i.e. the network looks for relevant content (e.g. in
[11], [12]):

i )¢ = Attention(e, s;_1) (6)
We combine these two complementary approaches to obtain
the attention weights from both the content and the position,
similarly to Chorowski et al. [15], who compute convolutional
features on the previous attention weights in addition to the
content-based features.

In this paper, we combine the previous attention map
with the encoded features through an MDLSTM layer, which
can keep track of position and content (Eqn. 3). With this
architecture, the attention potentially depends on the context
of the whole image. Moreover, the LSTM gating system allows
the network to use the content at one location to predict the
attention weight for another location. In that sense, we can see
this network as implementing a form of both overt and covert
attention.

The state vector s; allows the model to keep track of what
it has seen and done. It is an ensemble of LSTM cells, whose
inner states and outputs are updated at each timestep:

St = LSTM(St_l, gt) (7)
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Fig. 1: MDLSTM-RNN for handwriting recognition, alternating LSTM layers in four directions and subsampling convolutions.
After the last linear layer, the feature maps are collapsed in the vertical dimension, and character predictions are obtained after

a softmax normalization.

where ¢; represents the summary of the image at time %,
resulting from the attention given to the encoder features:

gt = Za(i,j),tei,j (8)
1,5

and is used both to update the state vector and to predict the
next character.

The final component of this architecture is a decoder, which
predicts the next character given the current image summary
and state vector:

yr = Decoder (s, gi) &)

The end of sequence is predicted with a special token EOS.
In this paper, the decoder is a simple multi-layer perceptron
with one hidden layer (tanh activation) and a softmax output
layer.

IV. RELATED WORK

Our system is based on the idea of [11] to learn to align and
transcribe for machine translation. It is achieved by coupling
an encoder of the input signal and a decoder predicting lan-
guage tokens with an attention mechanism, which selects from
the encoded signal the relevant parts for the next prediction.

It bears many similarity with the attention-based models for
speech recognition [14], [15]. Indeed, we want to predict text
from a sensed version of natural language (audio in speech
recognition, image of handwritten text here). As for speech
recognition, we need to deal with long sequences. Our network
also has LSTM recurrences, but we use MDLSTM units to
handle images, instead of bi-directional LSTMs. This is a
different way of handling images, compared with the attention-
based systems for image captioning for example [12], [13].

Contrary to some attention models like DRAW [18] or
spatial transformer networks [19], our model does not select
and transform a part of the input by interpolation, but only
weights the feature vectors and combines them with a sum.
We do not explicitely predict the coordinates of the attention,
as done in [20].

In similar models of attention, the weights are either com-
puted from the content at each position individually (e.g. in
[14], [13]), from the location of the previous attention (e.g. in
[16], [17]) or from a combination of both (e.g. in [15], [17]).

In our model, the content of the whole image is explicitely
taken into account to predict the weight at every position, and
the location is implicitely considered through the MDLSTM
recurrences.

Attention models have been applied to the recognition
of sequences of symbols (e.g. in [20], [21] for MNIST or
SVHN digits, and [22], [23] for scene text OCR on cropped
words), and recently to handwriting recognition. Most notably,
Doetsch et al. [24] apply an attention neural network to the
output of a BLSTM network operating on frames extracted
from a text line image with a sliding window. In the model we
propose, we apply the network directly to paragraph images,
and we do not predict the number of characters in advance.

Finally, our system is quite similar to the one proposed by
Bluche [25] in its architecture. The main difference is that we
apply the attention at the character level, allowing the model to
learn any reading order. This should also allow its application
to full document images.

V. EXPERIMENTS
A. Experimental Setup

We carried out the experiments on the popular [IAM
database, described in details in [26], consisting of images
of handwritten English text documents. They correspond to
English texts exctracted from the LOB corpus. 657 writers pro-
duced between 1 and 59 handwritten documents. The training
set comprises 747 documents (6,482 lines, 55,081 words), the
validation set 116 documents (976 lines, 8,895 words) and the
test set 336 documents (2,915 lines, 25,920 words). The texts
in this database typically contain 450 characters in about nine
lines. In 150 dpi images, the average character has a width of
20px.

The baseline corresponds to the architecture presented in
Fig. 1, with 4, 20 and 100 units in MDLSTM layers, 12
and 32 units in convolutional layers, and dropout after every
MDLSTM as presented in [27]. The last linear layer has 80
outputs, and is followed by a collapse layer and a softmax
normalization. In the attention-based model, the encoder has
the same architecture as the baseline model, without the
collapse and softmax. The attention network has 16 or 32
hidden LSTM units in each direction followed by a linear layer
with one output. The state LSTM layer has 128 or 256 units,



and the decoder is an MLP with 128 or 256 tanh neurons. The
networks are trained with RMSProp [28] with a base learning
rate of 0.001 and mini-batches of 8 examples. We measure the
Character Error Rate (CER%), i.e. the edit distance normalized
by the number of characters in the ground-truth.

B. The Usual Word and Line Recognition Tasks

We first trained the model to recognize words and lines.
The inputs are images of several consecutive words from
the IAM database. The encoder network has the standard
architecture presented in Section II, with dropout after each
LSTM layer [27] and was pre-trained on IAM database with
CTC. The results are presented in Table I. We see that the
models tend to be better on longer inputs, and the results for
complete lines are not far from the baseline performance.

TABLE I: Multi-word recognition results (CER%).

Model Inputs | CER (%)
MDLSTM + CTC | Full Lines 6.6
Attention-based 1 word 12.6
2 words 9.4

3 words 8.2

4 words 7.8

Full Lines 7.0

In Fig. 3, we display the attention map and character
predictions as recognition proceeds. We see that attention
effectively shifts from one character to the next, in the proper
reading order.

C. Learning Line Breaks

Next, we evaluate the ability of this model to read multiple
lines, i.e. to read all characters of one line before finding the
next line. This is challenging because it has to consider two
levels of reading orders, which is crucial to achieve whole
paragraph recognition without prior line segmentation.

We started with a synthetic database derived from 1AM,
where the images of words or sequences of words are stacked
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Fig. 2: Proposed architecture. The encoder network has the
same architecture as the standard network of Fig. 1. At each
timestep, the feature maps, along with the previous attention
map and state features are fed to the attention network which
outputs new weights at each position. The weighted sum of
the encoder features is given to the state LSTM, and to the
decoder.
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Fig. 3: Visualization of the attention weights at each timestep
for multiple words. The attention map is interpolated to the
size of the input image. The outputs of the network at each
timestep are displayed in blue.

to represent two short lines. The results (character error rate
— CER) are presented in Table II. Again, the system is better
with longer inputs. The baseline from the previous section does
not apply here anymore, and the error rate with two lines is
worse than with a single line, but still in a reasonable range.

TABLE II: Multi-line recognition results (CER%).

Two lines of... | CER (%)
1 words 11.8

2 words 11.1

3 words 10.9

Full Lines 9.4

We show in Fig. 4 the outputs of the decoder and of the
attention network on an example of two lines of one word.
We observe that the system learnt to look for the second line
when the first line is read, with an attention split between the
end of the first line and the beginning of the second line.
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Fig. 4: Visualization of the attention weights at each timestep
for multiple lines. The attention map is interpolated to the size
of the input image.

D. Towards Paragraph Recognition

Training this system on paragraphs raises several challenges.
The model still has to learn to both align and recognize,
but the alignment problem is much more complex. A typical
paragraph from IAM contains 450 characters on 9 text lines.
Moreover, the full backpropagation though time must cover
those 450 timesteps, on images that are significantly bigger
than the line images, which is prohibitive in terms of memory
usage.

To tackle these challenges, we modified the training proce-
dure in several ways. First, we truncated the backpropagation
through time of the decoder to 30 timesteps in order to
adress the memory issue. Note that although 30 timesteps
was chosen so that intermediate activations fit in memory
even for full paragraphs, it roughly corresponds to half a line,
or 4-5 words, and we suppose that it is sufficient to learn
the relevant dependencies. Then, instead of using only full
paragraphs (there are only 747 in the training set), we added
the single lines and all concatenations of successive lines.
To some extent, this may be seen as data augmentation by
considering different crops of paragraphs.



Finally, we applied several levels of curriculum learn-
ing [29]. One of these is the strategy proposed by [30], which
samples training examples according to their target length. It
prefers short sequences at the beginning of training (e.g. single
lines) and progressively adds longer sequences (paragraphs).
The second curriculum is similar to that of [20]: we train
only to recognize the first few characters at the beginning.
The targets are the first N x epoch characters, with N = 50,
i.e. first 50 during the first epoch, then first 100, and so on.
Note that 50 characters roughly correspond to the length of
one line. This strategy amounts to train to recognize the first
line during the first epoch, then the first two lines, and so on.

The baseline here is the MDLSTM network trained with
CTC for single lines, applied to the result of automatic line
segmentation. We present in Table III the character error rates
obtained with different input resolutions and segmentation
algorithms. Note that the line segmentation on IAM is quite
easy as the lines tend to be clearly separated.

TABLE III: Character Error Rates (%) of CTC-trained RNNs
on ground-truth (GT) lines and automatic segmentation of
paragraphs with different resolutions.

Line tation Attention-based
DPI GT Projection | Shredding | Energy (this work)
9 | 18.8 2471 19.8 20.8 -
150 | 10.3 17.2 11.1 11.8 16.2
300 6.6 13.8 7.5 7.9 -

We trained the attention-based model on 150 dpi images.
In Fig. 5, we show some examples of paragraphs being
transcribed by the network. We report the character error
rates on inputs corresponding to all possible sub-paragraphs
of one to twelve lines from the development set in Fig. 6. The
Paragraphs column corresponds to the set of actual complete
paragraphs, individually depicted as blue dots in the other
columns. Note that for a few samples, the attention jumped
back to a previous line at some point, causing the system to
transcribe again a whole part of the image. In those cases,
the insertion rate was very high and the final CER sometimes
above 100%.
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Fig. 5: Transcribing full paragraphs of text. Character predic-
tions are located at the center of mass of the attention weights.

11/69%
0| 9.43%

2% 1102% 1138%

840§ 8795

£ 8
@

L 80974

=
976 examples
744 examples
629 exampl

515 examples
287 examples
50 examples

18 examples

4 examples

116 examples

1

I
]
®

11 12 Paragral

8
E

Fig. 6: Character Error Rates (%) of the proposed model
trained on multiple lines (sub-paragraphs from IAM database),
evaluated with inputs containing different number of lines. The
medians and means accross all examples are displayed in red.
The blue dots are actual complete paragraphs.

VI. DISCUSSION

The results we present in this paper are promising and show
that recognizing full paragraphs of text without an explicit
segmentation into lines is feasible. Not only can we hope
to perform full paragraph recognition in the near future, but
we may also envision the recognition of complex documents.
The attention mechanism would then be a way of performing
document layout analysis and text recognition within a single
end-to-end system.

Fig. 7: Attention steps for a bidirectional Arabic input (left to
right, top to bottom).

We also carried out preliminary experiments on Arabic
text lines The model effectively reads from right to left,
and manages to handle bidirectional reading order in mixed
Arabic/Latin inputs in several images. In Fig. 7, we see that
the attention model correctly reads “25” from left to right,
and then starts reading the Arabic word from right to left.

We managed to handle long and complex sequences without
resorting to tricks like in [15]. Maybe the use of LSTMs,
particularly through their gating mechanism helped. Yet future
plans include to try those tricks in order to see if the results
improve. However, it should be noted that careful training was
required for the models to converge. The curriculum seemed
to make a difference, and training first on couple of lines
before switching to full paragraphs had a big impact. Training
with RMSProp was also quite important. That said, the TAM
database represents a relatively small amount of data, and



it would be interesting to see whether end-to-end paragraph
training from scratch is helped by more data.

In this version of the model, the prediction is not explicitely
conditioned on the previous character, as for example in [15],
and the integration of a language model is more complicated
than with classical models trained with CTC. This should be
addressed in future work. Finally, the presented system is very
slow due to the computation of attention for each character in
turn. The time and memory consumption is prohibitive for
most industrial applications, but learning how to read whole
paragraphs might open new directions of research in the field.

VII. CONCLUSION

In this paper, we have presented a method to transcribe
complete paragraphs of text without an explicit line seg-
mentation. The system is based on MDLSTM-RNNs, widely
applied to transcribe isolated text lines, and is inspired from
the recent attention-based models. The proposed model is able
to recognize multiple lines of text, and to learn encapsulated
reading orders. It is not limited to handwritten Latin scripts,
and could be applied without change to other languages (such
as Chinese or Arabic), write type (e.g. printed text), or more
generally image-to-sequence problems.

Unlike similar models, the decoder output is not conditioned
on the previous token. Future work will include this architec-
tural modification, which would enable a richer decoding with
a beam search. On the other hand, we proposed an MDLSTM
attention network, which computes attention weights taking
into account the context of the whole image, and merging
location and content information. The results are encouraging,
and prove that explicit line segmentation is not necessary,
which we believe is an important contribution towards end-
to-end handwriting recognition.
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