
Gated Convolutional Recurrent Neural Networks for
Multilingual Handwriting Recognition

Théodore Bluche and Ronaldo Messina
A2iA SAS

Paris, France
{tb,rm}@a2ia.com

Abstract—In this paper, we propose a new neural network
architecture for state-of-the-art handwriting recognition, alterna-
tive to multi-dimensional long short-term memory (MD-LSTM)
recurrent neural networks. The model is based on a convolutional
encoder of the input images, and a bidirectional LSTM decoder
predicting character sequences. In this paradigm, we aim at
producing generic, multilingual and reusable features with the
convolutional encoder, leveraging more data for transfer learning.
The architecture is also motivated by the need for a fast training
on GPUs, and the requirement of a fast decoding on CPUs. The
main contribution of this paper lies in the convolutional gates
in the encoder, enabling hierarchical context-sensitive feature
extraction. The experiments on a large benchmark including
seven languages show a consistent and significant improvement
of the proposed approach over our previous production systems.
We also report state-of-the-art results on line and paragraph level
recognition on the IAM and Rimes databases.

I. INTRODUCTION

Since their introduction in 2008, multi-dimensional long
short-term memory recurrent neural networks (MDLSTM-
RNNs [1]) became established as the state-of-the-art model
for handwriting recognition. They were involved in all winning
systems in international evaluations [2], [3], [4], and are now
a standard component of industrial systems [5], [6]. Yet,
they have conceptual drawbacks. Most notably, the features
computed by an MDLSTM layer at a given position may
depend on quite “distant” intput features. In other words, there
is no explicit control of the input context. We observed that this
lack of control of context dependency makes the features learnt
on text lines images not generalizable to paragraph images. In
the scope of handwriting recognition, we think that the context
of the whole image is not relevant to predict a signle character.
Instead, an area covering the character, and maybe surrounding
ones, should be sufficient.

In the wake of the recent developments in deep learning, it
would be beneficial to build a network that extracts reusable
textual features. A current trend in machine learning is to
obtain generic features with a neural network, trained on a
lot of data for a well understood task. Such features can then
be reused to train new models on different, and sometimes
more difficult tasks with less data. Prominent examples can
be found in computer vision, where AlexNet or VGGNet are
widely used as feature extractors for new tasks with visual
inputs. In natural language processing, word embeddings are
very popular. One of the goal of this work is to propose a
network architecture that could be an AlexNet of document

processing. Nowadays, the automatic recognition of handwrit-
ten text is no longer the main bottleneck of production systems
for document analysis and processing. Their performance is
more limited by the line detection and extraction in complex
documents, or language identification in multilingual streams.
Deep learning opens new opportunities to solve these tasks,
and we believe that learnt features that are good for text
recognition could represent interesting cues to tackle these
problems.

To exploit the large quantity of data to improve the accuracy
of models, we need a way to train the networks in days
rather than weeks. On the other hand, speed requirements
are crucial in production systems. MDLSTMs are not as
easily parallelizable as convolutions are, for example, although
optimized GPU implementations have been proposed. Bidi-
rectional LSTMs (BLSTMs) are also faster, but require a
sequential input. In the literature of neural networks, BLSTMs
are often applied to language, and convolutions to images.

Following those observations, we propose a neural network
architecture made of a convolutional encoder of the input im-
age and a BLSTM decoder predicting the sequence of charac-
ters. Such architectures have been explored in the past [7], [8],
[9], [10], [11], but have not yet outperformed the state-of-the-
art MDLSTM. MDLSTMs include complex neurons, with an
elaborated gating system, designed to control the information
flow, and solving the vanishing and exploding gradient issues
in recurrent networks. More than merely enabling an efficient
recurrence, we believe that the gates are a crucial component
in the success of those architectures, maybe more so than
the recurrence itself. The main contribution of this paper is
the addition of convolutional gates within the convolutional
encoder of images.

We evaluated our model on a big multilingual benchmark
made of public and private data in seven languages, as well
as on standard databases (Rimes [12] and IAM [13]). We
show that this new architecture outperforms the state-of-the-
art MDLSTM, and allows to extract generic features that are
reusable across languages. We also compared the gated con-
volutions with plain convolutions to highlight the importance
of gates in the achieved performance.

The remaining of this paper is divided as follows. Section II
exposes the motivations of the proposed system, and presents
an overview of the neural network. In Section III we introduce
the convolutional gates. The experimental setup is explained

in Section IV, and the results of the experiments are reported
in Section V. In Section VI, we propose a discussion of those
results and of the model, before concluding in Section VII.

II. PROPOSED MODEL

A. Neural Network Overview

Following the observation that convolutional neural net-
works are widely used in computer vision, and bidirectional
LSTM are very popular for language applications, we built a
deep neural network that could conceptually be split into three
main parts.

The encoder of the input image is made of convolutional
layers. It processes two-dimensional representations and pro-
vides 2D features maps. It contains only about 20% of the
model’s free parameters but represents the slowest component
of the architecture (≈80% of the computation). The goal is to
make it as generic as possible to be reusable (e.g. the same
for all languages, or for different tasks) in order to factorize
the processing time.

The interface transforms the 2D image-like representation
into the expected 1D representation (we predict sequences of
characters).

The decoder is a bidirectional LSTM RNN that processes
feature sequences to predict sequences of characters. It holds
most of the capacity of the network (≈80% of the model’s
size) but has a fast processing (≈20% of the computational
time)

B. Motivations

Several motivations led to the design of the proposed model.
Leveraging research experience from other fields: a lot

of research and good results were reported with convolutional
neural networks on images (e.g. for object recognition) and
LSTMs on language (e.g. speech recognition, machine trans-
lation). Since the inputs of our system are images, and the
outputs are sentences, it makes sense to use the presented
architecture.

Reusable features: The lower layers of a neural network
can be interpreted as a learnt feature extractor. In many ap-
plications, the lower layers of a network trained for a specific
task are used to perform a new task. The problem with LSTMs
is the lack of control on the locality of the extracted features,
Using convolutions makes the result independant of the big
picture (the same information is extracted at a given position,
independently of the input being a word, line, paragraph or
page image). Since the extracted features are used to recognize
the text, they hold some textual-content information and could
be useful for language identification, neural document layout
analysis, attribute detection, attention models, and so on.

GPU training: MDLSTMs do not lend themselves easily
to GPUs (low expected speedup, hard to handle variable-
sized inputs, not implemented in most public neural net GPU
libraries). If we are to train our models with a lot of data,
CPU training will become prohibitive in training time. Finding
good, GPU-compatible models was a pre-requisite to the

design of the model. Using components like convolutions,
linear layers, 1D recurrences was the main constraint

Tradeoff between speed, size, and accuracy: One of the
most important concern for production systems is to provide
accurate systems, which are also fast and small to enable on-
device recognition. Analyzing the models and layers showed
that convolutions are faster than LSTMs, and 1D LSTMs are
faster than MDLSTM.

C. Multilingual System

Traditionally, we train our systems on language-specific
data. For example, for the French neural network, we only
use available data in French. For low resource languages,
we fine-tune a neural network trained on another language,
but still on language specific data. There is however a major
issue with that approach: when we do not have much data for
one language, it often means we only have one collection of
documents. Thus, not only do we adapt the model to a new
language, but we also adapt it to a specific collection, which
might then be risky in production.

In our model, we first train the network on all available
data, in all considered languages. Thus the encoder should
extract features that are good across different collections. In
a subsequent step, we fine-tune only the decoder to each
language. This approach has several benefits. First, the encoder
represents most of the computation time. Adapting only the
decoder results in a very fast training. Since we keep a
shared encoder, it does not specialize to a specific language or
collection, so we can hope to have relatively generic features.
Moreover, the model is now factorized, as its first part is shared
across languages, which saves storing size.

In production setups, it might also be the case that the
language is not known in advance. Since we trained a generic
network first, it may be used in those incertain situations.
Moreover, if the features of the encoder turn out to be generic
enough, one may imagine using them for other purposes,
such as document layout analysis or the rejection of incorrect
segmentations. Once again, the benefit could be a factorization
of document processing.

III. GATED CONVOLUTIONS

Fig. 1. Convolutional Gate (in red): by applying a convolution filter, followed
by a sigmoid activation, the system learns in which context a computed feature
is relevant.

In this section, we present the convolutional gates that
we use in the encoder. The idea is depicted on Fig. 1. The
gate controls the propagation of a feature to the next layer.

Basically, the gate looks at the feature value at a given position,
and at neighboring values, and decides whether that feature at
that position should be kept or discarded. It allows to compute
generic features across the whole image, and to filter when,
according to the context, the features are relevant.

The gate (g) is implemented as a convolution layer with
sigmoid activation. It is applied to the input feature maps
x. The output of the gating mechanism is the pointwise
multiplication of the input with the output of the gate:

y = g(x).x (1)

where

g(xij) = σ(w00xi−1,j−1 + w01xi−1,j + w02xi−1,j+1 +

w10xi,j−1 + w11xi,j + w12xi,j+1 +

w20xi+1,j−1 + w21xi+1,j + w22xi+1,j+1)

which is reminiscent of the input or output gates in LSTMs,
except that the context is in the input space rather than coming
from outputs of the layer at neighboring positions. In that
sense, it is also quite similar to the gating mechanism proposed
in Quasi-RNNs [14].

Fig. 1 is actually a simplistic representation of the gate. In
fact, the gate computes a value in [0, 1] for each feature (i.e.
each dimension of the feature vectors at each position), based
on the whole feature vectors at neighboring positions. Thus the
context taken into account to decide whether a given value is
relevant is relatively rich.

In Fig. 2, we show a real example of what the gate does. In
the example, the gate is applied to intermediate feature maps
computed from the image of the word “television”. We display
the feature maps before and after the gate, as well as the maps
of gate values.

Fig. 2. Visualization of the effect of a convolutional gate.

That example illustrates what, in our opinion, is very
interesting with gates. First, we see that there is an effective
selection or filtering of features. The gating system allows a
feature to be excitatory, inhibitory, or absent, whereas with a
tanh it has either a positive or a negative effect, and with a
sigmoid it is either present of absent.

IV. EXPERIMENTAL SETUP

A. Data

To train our model, we used as much data as possible, from
various sources. We did not find any public data for some
languages, so we collected data from other sources to build
private collections. For several collections, we did not have a
line-level ground-truth. We applied methods similar to the one
presented in [15] to align page-level transcript to text lines.
The obtained dataset may contain errors, since we did not
manually validated the obtained data. Overall, we have about
133k text line images across seven languages, including 30%
of private data (mainly Russian). The number of text lines in
each collection is reported in Table I.

TABLE I
TRAINING DATA FOR THE MULTILINGUAL SYSTEM. DATASETS MARKED

WITH (*) CORRESPOND TO PRIVATE DATA AND AMOUNT FOR 30% OF THE
TOTAL NUMBER OF LINES. DATASETS MARKED WITH † WERE

AUTOMATICALLY LABELED BY ALIGNING IMAGES WITH TRANSCRIPTS
AND CONTAIN ERRORS. DATASETS MARKED WITH a WERE AUGMENTED

WITH LINE DEFORMATIONS.

Lang. Dataset Num.Lines
English Maurdora 32,475

IAM 6,482
IBM† 4,910

Private.EN* 9,404
French Rimes 10,532

Maurdor 26,870
Spanish Germana 11,505

Cristo Salvador 971
Private.SP* 452

German Private.DE†* 6,939
Italian Private.IT* 2,261
Portuguese Private.PT* 870
Russian Private.RU* 19,312

TOTAL 132,983

B. Architecture Details

We built neural networks according to the principles pre-
viously descibed. To optimize different objectives (accuracy,
speed and size), we designed two architectures. Both are made
of a convolutional encoder, a max-pooling across the vertical
dimension and a recurrent decoder. They are depicted on
Fig. 3. The encoder consists of a 3x3 convolutional layer with
8 (resp. 4) features, a 2x4 convolutional layer with 16 (resp.
8) features, a 3x3 convolutional gate, a 3x3 convolutional
layer with 32 (resp. 16) features, a 3x3 convolutional gate,
a 2x4 convolutional layer with 64 (resp. 24) features, a 3x3
convolutional layer with 128 (resp. 32) features, for the big
(resp. small) network. The encoder of the small network has
an additional 3x3 convolutional layer with 64 features. The
decoders are made of 2 bidirectional LSTM layers of 128
(resp. 50 and 100) units, with a linear layer of 128 (resp. 100)
neurons in between.

For each architecture, two networks are created: a slow
network operating on original images, and a fast network
operating on downscaled images to about 70% of their original
size. We will refer to these networks as Accurate (A) and

Fig. 3. Architectures of the proposed neural networks.

Fast (F) for the two instances of the big architecture, and
FastSmall (S) and FasterSmall (X) for the two instances of
the small architecture. Overall, the big architecture contains
about 750k parameters and the small one 300k. After weight
quantization to 12 bits (which does not hurt the performance),
these networks occupy respectively 1.1MB and 500kB of disk
space.

C. Training

We trained the network to minimize the Connectionist
Temporal Classification (CTC [16]) objective function. We
performed the optimization with stochastic gradient descent,
using the RMSProp [17] method with a base learning rate
of 0.0004 and minibatches of 8 examples. Following the
motivations previously exposed, we first train each of the four
models on all the available data, to obtain generic Latin-script
neural networks. The decoder part is subsequently adapted to
each language, using the features extracted with the encoder.
The encoder is not fine-tuned to maintain generic, language
and collection-independent features. For comparison purposes,
we also adapted to whole architecture to each language, and
trained neural networks without gates.

V. RESULTS

A. Multilingual Training

In this section, we present the results of the networks trained
on all the available data, in all languages. We will refer to these
networks as Generic models, since they are not sepecific to
a language. We compare the four networks (Accurate, Fast,
FastSmall and FasterSmall) to the previous version of A2iA
TextReaderTM.

A2iA TextReaderTMcomes with two neural networks for
each language (an accurate setup and a fast one). Each network
is an MDLSTM-RNN following the architecture presented
in [1], or variations thereof (e.g. different numbers of neurons
in hidden layers, or subsampling convolutions before the first
MDLSTM to get faster decoding). In most cases, the accurate
version operates on original (300DPI) images, and the fast
version on downscaled input images to about 70% of the
original size. Each one of these networks is only trained on
language specific data, although for low-resourced languages,

the initial weights come from the network trained on another
language.

The comparison is carried out on a large benchmark includ-
ing the validation and test sets of all public datasets, mobile-
captured pictures of some images from IAM and Maurdor,
some private data (not necessarily coming from the same
collections as the training sets). For languages with too few
data, or for which we had only one collection, we also included
synthetic line snippets generated with the method presented
in [18].

The character error rates of the neural networks applied
alone, without any lexicon or language model are reported in
Table II. We compare the results of the previous version of
A2iA TextReaderTMto the generic gated convolutional recur-
rent neural network (GCRNN). We see that for all languages
except French and Russian, the generic GCRNN is better, and
even the smaller and faster architectures are competitive. Note
that the comparison here is between seven language-specific
networks of the previous version of A2iA TextReaderTMand a
single GCRNN network.

The Portuguese networks in the previous version of A2iA
TextReaderTMare actually the networks trained on French data,
due to the lack of training documents in Portuguese when the
systems were created. They are intended to be applied with a
Portuguese language model. That explains why the character
error rates of the network alone on Portuguese data is so high.

B. Language-Specific Adaptations

To improve the performance of the models, we subsequently
adapt the generic models on language-specific data. As pre-
viously mentioned, we believe that keeping a shared encoder
brings many advantages, such as ensuring that the features
are not collection-specific. However, we need to make sure
that we do not loose too much potential accurary by fine-
tuning only the decoder. In Table II, we see that adapting only
the decoder already brings a lot of improvement, making all
models better than their counterpart in the previous version
of A2iA TextReaderTM, by 10 to 40%. Adapting the whole
network is rarely helpful, especially for languages with less
data. In these cases, the error rates may even be higher than
those obtained when only the decoder is adapted. Those results
validate our approach and intuition.

C. Comparison with Plain Convolution

In order to measure the impact of convolutional gates, we
compared the GCRNNs of Fig. 3 with versions without gates.
To keep the same number of parameters and the same depth of
the models, we replaced each gate with a simple feed-forward
convolutional layer, with the same hyper-parameters as the one
in the gate. For example, the first gate in the big architecture
is replaced with a 3x3 convolutional layer with 16 features.

We trained all configurations of the obtained CRNN ac-
cording to the same scheme applied to Gated CRNNs, i.e.
first a generic network, and then an adapted version for each
language, in which the decoder only is fine-tuned. The results
are displayed in Table II. We see that although the results are

TABLE II
COMPARISON OF THE PROPOSED MODELS WITH THE PREVIOUS VERSION OF A2IA TEXTREADERTM ON A BIG MULTILINGUAL BENCHMARK. TWO

ARCHITECTURES AND TWO MODES ARE EVALUATED: ACCURATE (A), FAST (F), FASTSMALL (S) AND FASTERSMALL (X). THE REPORTED RESULTS ARE
CHARACTER ERROR RATES OF THE NEURAL NETWORKS ALONE, WITHOUT LEXICON OR LANGUAGE MODEL.

Language English French Spannish Italian
Model A F S X A F S X A F S X A F S X

A2iA TextReaderTM 15.2 16.8 - - 8.8 10.6 - - 14.4 12.8 - - 18.3 28.3 - -
CRNN

Generic 16.8 18.5 21.3 22.9 12.2 14.4 17.1 19.1 13.4 16.0 18.8 21.4 16.1 19.3 22.3 24.7
Adapt decoder 15.4 17.2 17.6 19.5 10.6 12.2 12.1 14.3 13.3 15.9 18.8 21.4 16.3 18.5 21.5 24.7

Gated CRNN
Generic 13.9 15.2 17.7 19.1 9.8 11.3 14.2 15.4 10.2 12.5 15.3 16.5 13.6 15.7 19.0 20.0

Adapt decoder 12.8 14.2 15.8 16.8 8.0 9.3 10.7 12.1 9.1 12.5 15.3 16.4 12.9 14.0 19.0 18.6
Adapt whole 12.8 14.2 15.8 16.8 7.4 8.9 10.0 11.2 9.1 12.5 15.3 16.4 15.3 16.6 19.4 18.6

Language Portuguese German Russian
Model A F S X A F S X A F S X

A2iA TextReaderTM 42.0 45.1 - - 27.3 34.6 - - 15.5 19.9 - -
CRNN

Generic 19.1 21.9 24.4 27.0 22.4 24.0 27.6 29.7 24.9 28.4 35.8 35.8
Adapt decoder 17.0 18.4 20.5 23.1 19.3 21.7 24.3 27.5 18.1 20.5 20.7 23.3

Gated CRNN
Generic 15.4 17.7 21.2 24.0 18.6 20.4 24.4 25.1 20.2 22.6 28.5 30.7

Adapt decoder 12.7 15.5 17.1 19.6 17.0 18.4 21.4 22.9 14.4 16.9 18.8 20.3
Adapt whole 13.6 16.3 17.1 19.6 18.5 21.1 23.8 27.1 12.5 14.3 16.8 18.4

competitive with the previous version of A2iA TextReaderTM,
the error rates are much higher than those achieved with the
gated version.

D. Comparison with State-of-the-Art on Public Datasets

In order to compare our approach to the state-of-the-art on
public data, we fine-tuned the English Accurate model on
the IAM database [13] and the French Accurate model on
Rimes [12]. Moreover, we estimated language models (LMs)
for both languages. They are hybrid word/character language
models (LMs) following the method presented in [19]. The
LM for IAM is a word trigram estimated on the LOB1, Brown
and Wellington corpora with a vocabulary of the most frequent
50,000 words. The words of the corpora not in the vocabulary
are used to estimate a 7-gram character language model. Both
are smoothed with Kneser-Ney [20]. The LM for Rimes is a
word 4-gram estimated on the training set ground truth, with
a vocabulary of 5,000 words, and a character 5-gram.

TABLE III
LINE-LEVEL RESULTS ON THE IAM AND RIMES DATABASES.

IAM Rimes
Model Params WER% CER% WER% CER%

GCRNN 725k 10.5 3.2 7.9 1.9
[21] 2.6M 9.3 3.5 9.6 2.8
[22] 24M 10.9 4.4 11.2 3.5
[23] 10.7M 12.2 4.7 12.9 4.3
[24] 17M 12.7 4.8 12.1 4.4
[25] 500k 13.6 5.1 12.3 3.3

We obtained state-of-the-art results on IAM and Rimes
databases (Table III), with nearly four times less parameters.
On Rimes, we outperformed the best published system by
about 20%.

We also carried out the paragraph-level experiments, with-
out line segmentation, as proposed in [26]. To do so, we

1without passages of the development and test sets of IAM

replaced the maxpooling in the networks with the attention
model of [26]. The results are reported in Table IV. Compared
with the line level results, we almost do not loose any
performance at the paragraph level. The word and character
error rates are also much better than those reported in [26].

TABLE IV
PARAGRAPH-LEVEL RECOGNITION WITHOUT LINE SEGMENTATION.

Dataset. Model WER% CER%
IAM Bluche [26] 16.4 6.5

GCRNN 10.1 3.3
Rimes Bluche [26] 12.6 2.9

GCRNN 7.9 2.2

VI. DISCUSSION

Not only do we achieve better performance with this new
model compared to our baseline, but this architecture is also
faster than the MDLSTM architecture despite containing more
parameters, as one can notice in Table V.

TABLE V
NUMBER OF PARAMETERS AND AVERAGE PROCESSING TIMES OF

DIFFERENT NETWORK ARCHITECTURES

Model Params Decoding time
A2iA TextReaderTM Accurate 554k 281 ms/line

Fast 554k 152 ms/line
GCRNN Accurate 750k 145 ms/line

Fast 750k 95 ms/line
FastSmall 300k 88 ms/line

FasterSmall 300k 73 ms/line

In the proposed architecture, we have conceptually decou-
pled an “image-level” model made of convolutions and a
“language-level” model made of recurrent layers. By training
the encoder on a big amount of data, in several languages
and coming from different collections, we aimed at learning
generic textual features, which can be used to recognize

several languages, but also in a transfer learning scenario to
learn different tasks.

We have seen that even with no fune-tuning to a specific
language, the whole network gives competitive results, and
could be applied when the language in the document is not
known in advance, or when storage space requirements are
small and one model per language do not fit. The fine-tuning
of the decoder yields good results in every tested language,
allowing to share a significant part of the network across
languages. The processing is factorized since all decoders
operate with a common encoder. When inspecting the features
learnt by the encoder, we observed that most of them were
indeed generic textual features. For example, we see in Fig. 4
that one seems to detect accents and i-dots while another
responds to n-like shapes.

Fig. 4. Example of features extracted by the encoder.

We have carried out several experiments such as language
classification and wrong line segmentation rejection from these
features and obtained promising results, which are beyond the
scope of this paper, but confirm the interest of this approach.

VII. CONCLUSION

In this paper, we have presented a neural network architec-
ture yielding state-of-the-art results for handwriting recogni-
tion. It is made of a convolutional encoder extracting generic
features of handwritten text, and an LSTM decoder adapted
to each language, predicting character sequences. A crucial
aspect of the encoder is the gates, implemented as convolu-
tional layers, which are able to select the relevant features and
inhibit the others. In the future, we want to exploit the generic
features of the encoder to learn new tasks, such as document
layout analysis of language identification.

REFERENCES

[1] A. Graves and J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” in Advances in neural
information processing systems, 2009, pp. 545–552.

[2] A. Tong, M. Przybocki, V. Maergner, and H. El Abed, “NIST 2013 Open
Handwriting Recognition and Translation (OpenHaRT13) Evaluation,”
in 11th IAPR Workshop on Document Analysis Systems (DAS2014),
2014.

[3] S. Brunessaux, P. Giroux, B. Grilhères, M. Manta, M. Bodin, K. Choukri,
O. Galibert, and J. Kahn, “The Maurdor Project: Improving Automatic
Processing of Digital Documents,” in Document Analysis Systems (DAS),
2014 11th IAPR International Workshop on. IEEE, 2014, pp. 349–354.

[4] J. A. Sánchez, V. Romero, A. H. Toselli, and E. Vidal, “Icfhr2016
competition on handwritten text recognition on the read dataset,” in
Frontiers in Handwriting Recognition (ICFHR), 2016 15th International
Conference on. IEEE, 2016, pp. 630–635.

[5] B. Moysset, T. Bluche, M. Knibbe, M. F. Benzeghiba, R. Messina,
J. Louradour, and C. Kermorvant, “The a2ia multi-lingual text recogni-
tion system at the maurdor evaluation,” in International Conference on
Frontiers in Handwriting Recognition (ICFHR), 2014.

[6] T. Strauß, T. Grüning, G. Leifert, and R. Labahn, “CITlab ARGUS for
historical handwritten documents,” 2014.

[7] K. Elagouni, C. Garcia, F. Mamalet, and P. Sébillot, “Text recognition
in videos using a recurrent connectionist approach,” in International
Conference on Artificial Neural Networks. Springer, 2012, pp. 172–
179.

[8] S. Yousfi, S.-A. Berrani, and C. Garcia, “Deep learning and recurrent
connectionist-based approaches for arabic text recognition in videos,” in
Document Analysis and Recognition (ICDAR), 2015 13th International
Conference on. IEEE, 2015, pp. 1026–1030.

[9] P. He, W. Huang, Y. Qiao, C. C. Loy, and X. Tang, “Reading scene text in
deep convolutional sequences,” arXiv preprint arXiv:1506.04395, 2015.

[10] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene
text recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2016.

[11] C. Adak, B. B. Chaudhuri, and M. Blumenstein, “Offline cursive bengali
word recognition using cnns with a recurrent model,” in Frontiers in
Handwriting Recognition (ICFHR), 2016 15th International Conference
on. IEEE, 2016, pp. 429–434.

[12] E. Augustin, M. Carré, E. Grosicki, J.-M. Brodin, E. Geoffrois, and
F. Preteux, “RIMES evaluation campaign for handwritten mail pro-
cessing,” in Proceedings of the Workshop on Frontiers in Handwriting
Recognition, no. 1, 2006.

[13] U.-V. Marti and H. Bunke, “The IAM-database: an English sentence
database for offline handwriting recognition,” International Journal on
Document Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2002.

[14] J. Bradbury, S. Merity, C. Xiong, and R. Socher, “Quasi-recurrent neural
networks,” arXiv preprint arXiv:1611.01576, 2016.

[15] T. Bluche, B. Moysset, and C. Kermorvant, “Automatic line segmenta-
tion and ground-truth alignment of handwritten documents,” in Interna-
tional Conference on Frontiers in Handwriting Recognition (ICFHR),
2014.

[16] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: labelling unsegmented sequence data with recur-
rent neural networks,” in International Conference on Machine learning,
2006, pp. 369–376.

[17] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, 2012.

[18] P. Krishnan and C. Jawahar, “Generating synthetic data for text recog-
nition,” arXiv preprint arXiv:1608.04224, 2016.

[19] R. Messina and C. Kermorvant, “Surgenerative finite state transducer
n-gram for out-of-vocabulary word recognition,” in International Work-
shop on Document Analysis Systems (DAS), 2014.

[20] R. Kneser and H. Ney, “Improved backing-off for m-gram language
modeling,” in Acoustics, Speech, and Signal Processing, 1995. ICASSP-
95., 1995 International Conference on, vol. 1. IEEE, 1995, pp. 181–184.

[21] P. Voigtlaender, P. Doetsch, and H. Ney, “Handwriting recognition
with large multidimensional long short-term memory recurrent neural
networks,” 2016.

[22] T. Bluche, “Deep neural networks for large vocabulary handwritten text
recognition,” Ph.D. dissertation, Université Paris Sud-Paris XI, 2015.

[23] P. Doetsch, M. Kozielski, and H. Ney, “Fast and robust training of
recurrent neural networks for offline handwriting recognition,” pp. 279–
284, 2014.

[24] P. Voigtlaender, P. Doetsch, S. Wiesler, R. Schlüter, and H. Ney,
“Sequence-discriminative training of recurrent neural networks,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE Inter-
national Conference on. IEEE, 2015, pp. 2100–2104.

[25] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout
improves recurrent neural networks for handwriting recognition,” in
14th International Conference on Frontiers in Handwriting Recognition
(ICFHR2014), 2014, pp. 285–290.

[26] T. Bluche, “Joint line segmentation and transcription for end-to-end
handwritten paragraph recognition,” in Advances in Neural Information
Processing Systems, 2016, pp. 838–846.

