
Mathematical Formula Recognition using
Machine Learning Techniques

Théodore Bluche
under the Supervision of Dr. Vasile Palade

Dissertation submitted for the completion of the

MSc in Computer Science

Worcester College

University of Oxford

September 3, 2010

2

Abstract

Unlike texts, printed mathematical expressions have a two-dimensional nature, and their
recognition involves the recognition of the structure of the formula and of the symbols
contained in it. In most research, the structure recognition uses the identity of symbols.
Moreover, a few previous works use the structure in the symbol recognition, or machine
learning techniques in the structure recognition part.

There is a lot of mathematical symbols, they can be very similar, and new symbols are
being invented by scientists. The arrangements of symbols, however, evolve less. In this
dissertation, we investigate the possibility of recognizing the structure of the mathematical
expression without the symbols’ identity. We also perform a prior classification of the sym-
bols using the structure only. Moreover, we use very few knowledge about mathematical
expression syntax. This approach has, to the best of our knowledge, never been tried.

We built a system using machine learning techniques, such as neural networks and
fuzzy logic. A binary image representing a mathematical expression is segmented, and the
recognition is performed using the symbols’ bounding boxes. An iterative algorithm using
a multi-classifier system recognizes the structure and classifies the symbols.

The results proved that the context of a symbol, when known and used, can help
classify the symbol. The structure recognition using a non-recursive algorithm with very
few backtracking yielded good results. This project proved that the symbols’ identity is
not essential for the structure analysis. Moreover, the structure recognition provides some
useful information for the symbol classification. This classification is assumed to help the
symbol recognition in a future work. Finally, the machine learning approach produced
a flexible system, able to adapt to unknown symbols and writing styles, and to return
confidence values for the recognition, rather than a crisp interpretation.

3

4

Acknowledgements

I owe my deepest gratitude to my supervisor, Vasile Palade, for the guidance and support
he gave me thoughout this project. His advice and experience have greatly helped me focus
on the important points and write this dissertation.

It is an honor to thank Dr. Dorothea Blostein, who published several papers on the
subject, and who pointed me out the Infty data set. I owe a special acknowledgement to
Dr. Claudie Faure, researcher in ENST ParisTech. She made available to me two papers
she published, which I could not find. I am very grateful for she showed great interest in my
project, and replied all my emails quickly. I would also like to thank Laurence Likforman,
who interviewed me during a PhD application, and then sent me an interesting paper
related to my project [18].

This thesis could not have been complete without the help of the persons who have
completed the online quiz for manual equations labelling. I collected more answers than
expected, and some people even sent me suggestions about the presentation of the quiz.

I would like to show my gratitude to my academic supervisor, Bernard Sufrin. I enjoyed
our conversations, and his support has been of immeasurable value. His encouragement
and guidance thoughout the masters allowed me to take pleasure in studying in Oxford.

I also want to take this opportunity to thank the teachers, staff and students of the
Computing Laboratory, and of Worcester College, for their assistance and friendship, and
without whom the experience of being a student in Oxford would not have been complete.

I owe an acknowledgement to Supélec, the engineering school in which I studied last
year. They helped me applying to Oxford University. I would like to address a special
thanks to Anne Chrétien, for her recommendations and support, and my referees Yolaine
Bourda, Alain Destrez and Françoise Brouaye. I would like to thank my uncle Olivier,
who shared with me his experience living in England and helped me applying to Oxford
University

Finally, I am indebted to my family for they made this fulfiling experience possible by
funding my MSc. They have been of great support when I encountered difficulties, from
the application process to the end of the project.

5

6

Contents

Abstract 2

Acknowledgements 3

1 Introduction 11
1.1 Description of the Problem . 11
1.2 Project Aims . 12
1.3 Structure of the Thesis . 13

2 Background 15
2.1 Mathematical Notations . 15

2.1.1 Writing and Reading a Mathematical Formula 15
2.1.2 Problems posed by Mathematical Expressions 16
2.1.3 Representing a Formula . 17

2.2 Mathematical Formula Recognition . 17
2.2.1 Symbol Recognition . 18
2.2.2 Structure Recognition . 19

2.3 Review of Existing Techniques . 19

3 Motivations and Method Overview 25
3.1 Motivations and Hypothesis for a New Approach 25

3.1.1 Motivations . 25
3.1.1.1 Apparent simplicity of the structure recognition 25
3.1.1.2 Mathematical symbols are sometimes complicated 25

3.1.2 Hypothesis . 26
3.2 Scope of the project . 28

3.2.1 Complexity of Mathematical Expressions 28
3.2.2 Extent of the Project . 29
3.2.3 Limitations . 29

3.3 Method Overview . 31
3.3.1 Presentation of the Proposed System 31
3.3.2 Pre-processing . 32
3.3.3 Symbol Classification . 33

3.3.3.1 Rough Classification . 33
3.3.3.2 Classification using Context 34

3.3.4 Structure Recognition . 35
3.3.4.1 A Neural-Network based Relationship Classifier 35
3.3.4.2 Finding Children in Class-Dependant Fuzzy Regions . . . 36
3.3.4.3 Extracting Lines using Fuzzy Baselines 37
3.3.4.4 Recognizing the Structure 37

3.3.5 An Iterative Process for the Whole Recognition 38

7

8 CONTENTS

4 Design 39
4.1 Preliminary Work . 39

4.1.1 Tools Used . 39
4.1.1.1 Tools for Analysis . 40
4.1.1.2 Tools for Construction . 40
4.1.1.3 Tools for Implementation 40

4.1.2 The Data Sets . 41
4.1.2.1 Overview of an Existing Data Set: InftyCDB − 1 41
4.1.2.2 Towards a New Data Set 42

4.1.3 Data analysis . 46
4.1.3.1 Analysis of the Data on Relationships 46
4.1.3.2 Analysis of the Data on Symbol Classes 47

4.2 Design of the System . 49
4.2.1 Representation of the Data . 49
4.2.2 Practical Design of the Classifiers . 53

4.2.2.1 Symbol Classifier . 54
4.2.2.2 Relationship Classifier . 58

4.2.3 Functionalities of the System . 64
4.2.4 Integration of the Classifiers in an User-Friendly Interface 67

4.2.4.1 Functionalities of the Interface 67
4.2.4.2 Features of the Interface 68

4.3 Presentation of the Algorithms . 70
4.3.1 Image Segmentation . 70
4.3.2 The Recognition . 70

4.3.2.1 Rough Symbol Classification 71
4.3.2.2 Structure Recognition . 71
4.3.2.3 Symbol Classification using Context 72
4.3.2.4 The Iterations . 73

4.3.3 Exporting the Results . 74

5 Implementation 77
5.1 Implementation of the Expressions and Classifiers 77

5.1.1 Implementation of the Expressions 77
5.1.2 Implementation of the Classifiers . 79

5.1.2.1 Trained classifiers . 79
5.1.2.2 Fuzzy Regions . 81
5.1.2.3 Fuzzy Baselines . 81
5.1.2.4 Structure Recognizer . 81

5.1.3 Tools for the Analysis of the Classification Results 82
5.2 Additional Functionalities . 82
5.3 Implementation of the Graphical User Interface (GUI) 82

5.3.1 Main Window . 83
5.3.2 Result View . 84

5.3.2.1 ResultView . 84
5.3.2.2 RCWindow . 84
5.3.2.3 PlotWindow . 85

5.3.3 Input Windows . 86
5.3.4 File Manager . 87

5.4 Implementation of the Structure Recognition Algorithm 88
5.4.1 BaselineStructure object . 88
5.4.2 The Stack of Last Symbols Seen . 89

6 Results and Evaluation 91

CONTENTS 9

6.1 Parameters used for Evaluation . 91
6.1.1 Recognition Errors . 91
6.1.2 Correctness Scores . 92

6.1.2.1 Symbol Correctness . 92
6.1.2.2 Relationship Correctness 93

6.1.3 Aggregating the Scores . 94
6.2 Design of the Tests . 95

6.2.1 The Test Sets . 95
6.2.2 Comparison with Human Labelling 96

6.3 Performance of the System . 100
6.3.1 Presentation of the Results . 100

6.3.1.1 Overall . 100
6.3.1.2 Per Test Set . 101
6.3.1.3 Human labelling . 103

6.3.2 Evaluation . 103
6.3.2.1 Scope of the Project and Flexibility 103
6.3.2.2 Evaluation of the Structure Recognition 104
6.3.2.3 Analysis of the Symbol Classification 104

7 Conclusions 107
7.1 Findings . 107
7.2 Evaluation . 108
7.3 Ideas for Further Development . 108

7.3.1 Improving the Training Set . 109
7.3.2 Improving the Recognition . 109
7.3.3 Extending the Proposed System . 110

Bibliography 110

A Implementation 115
A.1 Main Functionalities of the System - Use Case View 115
A.2 Package Organization . 115
A.3 Methods in the Expression Implementation 117
A.4 Handling XML Files . 118
A.5 The Graphical User Interface (GUI) . 118

A.5.1 The Menus . 118
A.5.2 The Panels of the Main Window . 120
A.5.3 Implementation of the ’Plot’ Window 120
A.5.4 The File Manager . 121

A.6 Implementation of Two Algorithms . 121
A.6.1 Data Set Creation . 121
A.6.2 The Classification . 122

A.6.2.1 Symbol Classification . 122
A.6.2.2 Structure Recognition . 122

B Algorithms 125
B.1 Creation of the Data Sets . 125
B.2 Train the Classifiers . 126
B.3 Segmentation . 127
B.4 Parse Latex File . 129
B.5 Symbol Classification . 129
B.6 Structure Recognition . 130
B.7 Iterative Algorithm . 133

10 CONTENTS

B.8 Export XML Interpretation . 133
B.9 Compare Expressions . 134

C Test Sets and Results 137
C.1 The Test Sets . 137
C.2 Notations and Figures . 137
C.3 Results . 138

Chapter 1

Introduction

First, we will briefly describe the problem of mathematical formula recognition. Then,
we will state the aims of the project, and, finally, we will introduce the different parts of
this document.

1.1 Description of the Problem

Today, as documents tend to be dematerialized to be stored on computer, systems able
to transform a physical item into a digital one are needed. Most documents mainly contain
text, either printed or handwritten. To this concern, Optical Character Recognition (OCR)
has had tremendous improvements since the 1950s, leading to efficient pieces of software
available nowadays. In particular, current technology allows one to enter a text by directly
writing it on a data tablet, or touchscreen.

While some may argue that typing a text is quicker than writing it, there is no doubt
that it would be easier to write or scan a mathematical expression rather than inputting it
using the available tools. For example, writing a complicated equation using Latex requires
expertise, while the equation editors such as the one available in MS Word involve the
selection of a symbol or a structure in a list, which constitutes a long process. Moreover,
several printed documents, such as scientific papers or books, cannot be efficiently stored
on a computer unless a system is able to recognize the mathematical formulae they contain.

Plain texts and mathematical expressions are very different items. Text is a one-
dimensional sequence of characters, whereas mathematical expressions are a two-dimensional
arrangement of symbols. Text contains letters and digits, whereas the number of symbols
in equations is infinite. Moreover, in texts, single characters do not have a meaning of
their own (except for acronyms). The smallest meaningful entity is the word, which is a
sequence of characters. In mathematical expressions, each symbol has its meaning. In fact,
mathematical expressions provide a convenient way to communicate scientific concepts in
a short and clear way. Indeed,

∑
i a

i looks somewhat simpler than ”the sum of all powers
of the number a”. This example also illustrate the fuzziness surrounding symbols. If a and
b refer to the same concept,

∑
i a

i and
∑

j bj have exactly the same meaning. The set of
expressions with that meaning is infinite, whereas in texts, characters are chosen to form
words which are part of a vocabulary. Synonyms may exist but (i) in a finite number and
(ii) they do not express the exact same idea.

11

12 CHAPTER 1. INTRODUCTION

The symbolic style of mathematical expressions drives scientific writers to explain what
concept the symbols refer to. Indeed, the same symbol can have different meanings. For
example, the capital Greek letter sigma (Σ) often refers to the summation, but might
represent a set of object in a different context. Letters are sometimes variables which need
to be described to be understood.

These differences between text and mathematical expressions imply that their recog-
nitions are dissimilar. In texts, characters can be recognized in a sequence and grouped
to form words. A vocabulary can for instance help disambiguate the recognition. For
mathematical expressions, the symbols must be recognized and the structure as well. Dis-
ambiguation is more complex because there is no such thing as a mathematical vocabulary.

Although texts and mathematical expressions differ in their form, similar purposes exist
for their recognition. This often corresponds to what extend one wants to understand the
input. This includes:

• the mere recognition of characters/symbols and their position to be able to reproduce
the input on a computer,

• the recognition of whole words and formulae to ensure a meaningful representation
of the input,

• the understanding of the input, for example using natural language processing for
texts. For mathematical expressions, it corresponds to the understanding of the
meaning of the symbols.

The first published works on mathematical expression recognition date from the 1960s,
but this field enjoyed significant research interest in the last two decades. The symbol
recognition is either performed by classical OCR techniques, for instance using support
vector machines [22], pattern matching [16, 24], or taken as granted (e.g. [28, 20, 2, 1, 9]).
The structure analysis is mainly done using geometrical considerations, based on implicit
rules (e.g. in [21, 28, 20, 27]) or grammar rules [17, 15, 8]. These rules take into account
the identity of the symbol, and very few papers, such as [25], attempted to dissociate the
structure analysis from the symbol recognition. The ambiguity in mathematical expres-
sions, especially when handwritten, is commonly accepted. It can be an ambiguity on the
symbol identity (e.g. q and 9 can look similar) or on the structure. Only some researches
dealt with that problem, by keeping several interpretations on the symbol’s identity until
the structure disambiguate it [17], or by producing several final interpretations, for the
user to choose the best one [29]. Even though artifical intelligence can be found in the
structure recognition, through fuzzy logic [29, 12], or search algorithms [9, 17, 18] (among
others), machine learning is, to the best of our knowledge, rarely used in the structure
analysis [1, 9].

1.2 Project Aims

The structure analysis of mathematical expressions varies from the mere recognition of
spatial relationships (on the same line, exponent, and so on) to the real understanding
of a formula. For example, Zanibbi et al. [28] perform a lexical and semantic analysis of
the formula, enabling their system to recognize the function sinus rather than a triplet of
symbols (’s’, ’i’, ’n’) on the same line. The semantic analysis is often used to recognize the

1.3. STRUCTURE OF THE THESIS 13

structure. For instance, some papers, such as [27], utilize the dominance and precedence
of symbols to find the most likely relationships.

Most papers use the identity of symbols to recognize the structure. For example, it
allows to deduce the dominance of the symbol, and the regions where arguments, such as
exponent, should be found. It also means that an error on the symbol recognition can
have severe consequences on the structure analysis. In particular, mathematical notation
evolve with the needs of scientists, and new symbols appear. These symbols might not be
identified and compromise the structural analysis.

This project investigates the possibility of performing the structural analysis and a sym-
bol classification at the same time, using only very few knowledge about mathematical
expression syntax. Our approach is based on the mutual constraint existing between sym-
bols and structure. Indeed, knowing the symbols’ identity helps analyse the structure,
but the structure can help disambiguate the symbol recognition ([17]). We aim to develop
a system based on machine learning techniques, where the symbol classification and the
structure analysis are separate tasks which constrain each other.

Instead of identifying the symbols, we classify them according to a classification de-
scribed in the literature (e.g. [28, 17]). Our contribution to the field consists in assuming
that this classification can be performed using the symbols’ bounding boxes, and the struc-
ture of the expression only. We develop an iterative algorithm to exploit the constraints
between both tasks. Our motivation is to define a method for building a system as flexible
as possible and able to deal with the evolution of mathematical notation, and with the
variation in the writing style. To do so, we implement machine learning artifacts, which
allow us to return a soft interpretation, with confidence values, rather than a crisp one.
The goal is to dissociate the structure recognition, which is the core of a mathematical
expression recognizer, from the actual symbol identification, while providing results to
improve the latter. Indeed, the classification of symbols constrains their identification,
making it easier.

Last but not least, we aim to achieve a very fast recognition of the structure. This implies
a limited usage of backtracking, avoiding too much recursion, and a few comparisons
between symbols only. This is a big challenge, given the nested two-dimensional nature of
mathematical expressions.

1.3 Structure of the Thesis

This thesis is divided into seven chapters.

• Chapter 1 introduces the project and its relation to the field of mathematical ex-
pression recognition.

• Chapter 2 presents a background study about mathematical expressions in general,
and their recognition by a computer program in particular. This is followed by a
review of the literature in the area.

• Chapter 3 explains our motivations and hypothesis for this new approach to math-
ematical formula recognition, and gives an overview of the method we proposed.

14 CHAPTER 1. INTRODUCTION

• Chapter 4 provides more details about the design of the system, that is the artifacts
and parameters used, and presents the algorithms.

• Chapter 5 focuses on the actual implementation of the system using object-oriented
programming

• Chapter 6 evaluates the results yielded by the implemented system and draws con-
clusions about the performance.

• Chapter 7 concludes the dissertation, analysing how this approach can contribute
to the field of recognition of mathematical expression, and giving ideas for further
development.

• Finally, the appendices provide more details about the developed system and its
performance.

Chapter 2

Background

In order to build a system able to recognize mathematical expressions, some preliminary
work is necessary. We need to specify what is a mathematical expression. That means that
we have to define how mathematical expressions are written, and how we read them. We
have to investigate the different existing arrangements of symbols, and the corresponding
meanings. Moreover, mathematical expressions can be used in different ways. They may
be written for humans to easily read them. They are then put down as two-dimensional
graphics. They may be written for computers to use it. The representation can vary, from
the reverse polish notation used in 1980s handheld calculators, to tree structures in some
symbolic computation systems today.

For mathematical expression recognition, the notation which we want to understand is
graphical. It poses some problem, such as understanding the relations between symbols.
Indeed, they have a structure, used for mathematical communication between humans,
independently from computers. This leads to the identification of the tasks involved in
expression recognition, each having specific problems.

Section 2.1 focuses on the mathematical notation and representation of the formulae in
general. Section 2.2 explains what is mathematical expression recognition. Some research
has been carried out in the past, especially in the last few years. Section 2.3 aims to review
the state of the art in the field of mathematical formula recognition.

2.1 Mathematical Notations

A mathematical expression is not merely symbols put down in a random two-dimensional
layout. It has a well-organized structure, which obeys the rules of the mathematical
notation. The arrangement of two symbols with respect to each other conveys a certain
meaning.

2.1.1 Writing and Reading a Mathematical Formula

The usual writing and reading order for mathematical expressions is left to right. There-
fore, understanding a mathematical expression is not completely two-dimensional. More-
over, symbols in a relation are usually close to each other. For example, a subscript is
very likely to be the closest symbol on the bottom right of its parent. In a few cases, the
interpretation of a formula is possible only by reading the whole formula. For instance,
we can fully understand an integration when we see the final dx.

15

16 CHAPTER 2. BACKGROUND

However, reading a mathematical expression is not straightforward, for different symbols
are usually read differently. This can be illustrated with some examples.

∑n
i=0 ai is usually

read ”sum over i from 0 to n of a to the ith”. The pattern is operator, argument below,
argument above, argument on the same line.

a

b
is read ”a over b”. The pattern in this

case is argument above, operator, argument under.

2.1.2 Problems posed by Mathematical Expressions

The major differences between plain text and mathematical expressions are: (i) there
are far more symbols used in mathematical formulae, and (ii) there are more kinds of
relationships in mathematical expressions. Those two points induce two main challenges
in the recognition of mathematical expressions.

The Number of Symbols

Plain texts contain letters, digits and punctuation. There are some general rules such as
”capital letters are found at the beginning of a word” or ”digits are usually not mixed with
letters in the same word”. Mathematical expressions can contain a wider range of symbols.
Roman letters and digits are only a small subset. The Greek alphabet is often used, and
a lot of mathematical symbols exist. It is impossible to list them, since scientists keep
inventing new ones. Moreover, there are symbols which are similar in shape and appear
in different contexts:

• ∏
is the product symbol, whereas π is the Greek letter pi,

• P is the capital letter while p is the small letter,

• < is the operator ’lower than’ in 1 < 2 and a bracket in 〈a, b〉

• s is a variable in s3 whereas it is part of a function name in sin(
3π

2
)

or have distinct functions or meanings :

• digits almost always represent numbers

• letters can either be included in a function name, like n in sin(π), represent an precise
object which is explained in a short text, as in ”O(n), , where n is the number of
nodes”, or be artifact to represent a more general concept, as the hidden variable n
in

∑5
n=0 xn.

• finally, most symbols are redefined for the need of the writer.

The Spatial Relationships

We can list six main spatial relationships: superscript (or top-right), subscript (or
bottom-right), on the same line, above, under, inside. Once again, scientists may use
new spatial arrangements when they need to, or give different meanings to existing rela-
tionships. For example, with the ’superscript’ relation, i is the power in xi, whereas (i) is
an index in x(i). The relation ’on the same line’ is even more complicated, for example:

• in
∑

a, a is an argument,

• in 42, 4 and 2 are part of the same number,

2.2. MATHEMATICAL FORMULA RECOGNITION 17

• in an, the meaning is likely to be a× n

• tan represents probably the ’tangent’ function

• (i + 1) can be the argument of a function, of a product, and so on.

While the meaning can differ from one case to another, the spatial behaviours associated
with these relationships is fixed, and the translation in a Latex form is often the same for
all these possibilities.

Mathematical can generally be considered as nested structures, especially due to the

existence and nature of spatial relationships. In
a + 1
a− 1

, a + 1 and a− 1 are mathematical

expressions on their own, nested in a more general one. As is 2xk in n2xk . Because formulae
are globally written on a line, called baseline, the nested structure implies the existence
nested baselines. The nested nature of mathematical expression entails a relation of child
to parent for the nested expression.

2.1.3 Representing a Formula

The most intuitive way to represent mathematical expressions is graphical. It is a printed
or handwritten two-dimensional structure, with symbols of different size and positions. It
gives an easy reading and understanding of the formula by humans.

However, other forms exist, and are suited for inputting expressions in a computer.
Simple formulae can be written on a single line. For example, (x+1)*y^i remains one
of the simplest representation of that expression. Understanding and interpreting it is
straightforward for anyone knowing a few mathematics. It becomes harder when the
complexity increases. Latex-like forms allow one to input a mathematical formula using
a simple keyboard. Complex symbols are represented by keywords. For example,

∑N
a=0 a

becomes \sum_{a=0}^{N} a.

To capture the meaning of an expression in a logical manner, it can be put in the form of
a tree. For example, the previous formula (x+1)*y^i is represented by the tree on Figure
2.1.

Another format is MathML 1, which is an XML format. It captures the nested nature
of mathematical expressions. Two variants exist. Presentation MathML focuses on the
spatial representation of the expression. Content MathML represents the meaning of it,
and can be seen as a text translation of the tree representation presented before.

2.2 Mathematical Formula Recognition

Mathematical formula recognition is the task in which the image representing a math-
ematical expression is interpreted by the computer so that it can be stored, interpreted,
and reused. Several purposes can be identified. The goal can be to recognize a hand-
written expression, and display it in an electronic form. In this case, the meaning of the
expression is not important. Sometimes, the meaning is important, when one wants to
fully understand the expression. In this case, one has to recognize implicit multiplications,

1Mathematical Markup Language, W3C, from http://www.w3.org/TR/MathML2/, July 2010

18 CHAPTER 2. BACKGROUND

Figure 2.1: Representation of (x+1)*y ˆ i as a tree

for example (e.g. ax means a× x). At a higher level, it is useful to retrieve the meaning
and to forget the form of the formula. For example, f(x) and g(y) can have the same
meaning in different contexts.

The recognition of mathematical formulae consists of two tasks:

• The recognition of the symbols: each foreground pixel in the image belongs to a
symbol, and each symbol has a meaning in the expression, and conveys some infor-
mation.

• The recognition of the structure: the two-dimensional layout of an expression obeys
some rules, and each arrangement corresponds to a particular meaning.

2.2.1 Symbol Recognition

The symbol recognition task is the procedure by which each symbol is isolated and
recognized by a classifier. It is not an easy task because of the large number of symbols,
and we do not have a dictionary of words as we do for text recognition. The same symbol
can appear in different context, and it is sometimes crucial to make the difference between
for example

∑
, the summation symbol and Σ, the Greek letter. Some different symbols

have the same shape, such as p and P , and it is no easy task for a classifier to recognize
them properly. Even more issues appear when it comes to handwritten expressions (e.g.
the q-9 problem pointed out by [17], see Figure 2.2).

This task is usually performed by neural networks or support vector machines. In most
published papers on the topic, the symbol recognition is done (or assumed to be successful)
before the structure recognition. It can be problematic, because an error on the symbol
identification can have serious consequences on the structure recognition. For example (x)
might be recognized as a subscript in P (x) if P is identified as the small letter p. Some
researches [17, 9, 18] propose to leave ambiguities on the symbol recognition until it is
disambiguated by the structure.

2.3. REVIEW OF EXISTING TECHNIQUES 19

Figure 2.2: The q-9 problem exposed in [17]

2.2.2 Structure Recognition

While the previous task is easy to understand, the recognition of the structure can be
more or less complex, according to which level of interpretation one wants to achieve. We
have identified several purposes, along with the extend to which the structure must be
analysed.

• For a mere digitalizing in a Latex form for example, the recognition of spatial re-
lationships regardless of their meaning is usually sufficient. For instance, in the
example presented earlier: xi / x(i), we do not need to know that this i is a power
in the former case, and an index in the later to write in Latex x^i and x^{(i)}.

• One may want to understand the sense of the expression. It can be important to
know that 1+2 is not only a sequence of symbols on the same line, but an addition.
In this case, the meaning of the operators, both explicit (e.g. +) and implicit (e.g.
the multiplication in xy), must be known.

• Sometimes, an even deeper analysis is required. In mathematical expressions, the
meaning does not really come from the symbols involved, but rather from what they
represent. As pointed out earlier, the same function (or variable) can have a different
name in different contexts. It is possible that f(x) and g(y) are the exact same thing
in two different documents.

Thus, the recognition of the structure of an expression is often a mixture of a layout
analysis and the interpretation of what represent the symbols and the relationships.

2.3 Review of Existing Techniques

As we will see, some methods are only based on spatial considerations, such as baselines.
Other techniques use rule-based systems such as grammars, and parse the expression to find
its interpretation. Several algorithms take into account knowledge about mathematical
symbols and operators, and their spatial behaviour. Very few papers use machine learning
techniques, although there have been some works using fuzzy logic.

Zanibbi et al. [28] analyse the baselines present in an expression. In particular, they
consider the dominant baseline, which is the line on which the expression would be writ-
ten, and nested baselines, corresponding to subscripts, for example. During a first step
(layout pass), they build a tree based on these baselines. Then, they use knowledge about

20 CHAPTER 2. BACKGROUND

mathematical notation properties to define some tree transformations. For example, they
recognize that the sequence ’sin’ correspond to the so-called function, or that in limn→1,
n → 1 is in fact an argument of the limit. Finally, they obtain a tree which represent the
meaning of the equation. The Baseline Structure Tree building requires a recognition of
individual symbols. They define symbols classes, such as ascender (e.g. ’d’, ’b’), descender
(e.g. ’y’, ’p’), Variable Range (e.g.

∑
,

⋃
), and so on. Using these classes, they define

regions around a symbol for where subscripts, superscripts, above expressions (and so on)
should be found, if any. This baseline structure analysis has been used in several other
works, such as [22].

In a later work [29], Zanibbi et al. improved the recognition of subscripts and super-
scripts, using fuzzy regions instead of crisp regions. This was motivated by the fact that
most ambiguities in handwritten mathematical expressions concern the choices subscrip-
t/inline and inline/superscript. Besides, the use of fuzzy logic enables them to return a
ranked list of interpretations, instead of just one.

The online recognition method proposed by Suzuki et al. [20, 24] proceed in four steps:
stroke recognition, structure recognition, multiple-stroke character recognition, and sub-
scripts/superscripts recognition. After a baseline analysis, they first recognize dominant
symbols such as

∑
or fraction lines, which they call parent symbols, and identify child

blocks in which arguments should be found. Then the rest of the structure is recognized
using thresholds for the heights of bounding boxes and vertical locations of the characters.

Lee et al. [16] use a procedure-oriented algorithm. After the symbol recognition, they
extract operators such as

∑
, and group them with surrounding symbols, according to the

operator spatial behaviour. For example,
∑

is grouped with symbols placed above and
below. Then, they order these groups according to their y-coordinate. Finally, a string
representing the expression is generated.

Chang [6] first identifies the operators, and build a tree representation. He uses pattern
matching, with patterns built from previous knowledge about how symbols should be
organized around these operators. Operator precedence is used to correctly understand
the expression.

Chaudhuri et al. [7] have a more complete three-step approach. Their system includes
first the detection of an ME in a document. then comes the symbol recognition. Finally,
they study the arrangement of symbols. To do so, they group symbols using their spatial
relationships involving features such as bounding boxes and sizes. The identification of
logical relationships among different groups comes after, and is driven by a set of rules.

In [21], Tapia and Rojas first get the baselines, as in [28], and recursively build a min-
imum spanning tree, in which each node is a symbol. They define the distance between
two symbols according to whether one lies in the range of the other (geometrically speak-
ing) or not. In this method, they use different classes of symbols (ascender, descender,
centered), and regions around a symbol are built accordingly with crisp thresholds. They
also consider attractor points according to the operator class, expressing where arguments
are usually found. For example, for the operator

∑
, there usually are arguments above

and below, so they put attractor points on the middle of the upper and lower boundaries
of this symbol.

2.3. REVIEW OF EXISTING TECHNIQUES 21

Xiangwei et al. in [27], also use symbol dominance and minimum spanning tree, but
perform further analysis of symbol arrangements in order to build symbol groups more
accurately. In particular, they identify the main character in the dominant baseline, or
group symbols which represent a function name (e.g. ’sin’, ’lim’).

Ha et al. [13] use a combined strategy to analyze the structure. Besides the baseline
structure analysis as proposed in [28], but using a graph to represent the expression, they
construct a minimum spanning tree, as in [21]. They perform afterwards a syntactic
and semantic analysis, using rules based on the operator identity. They have a special
treatment for ambiguous operators such as horizontal lines.

Suzuki et al. [9] use a virtual link network. During the character recognition phase, they
give a confidence value for each possible symbol interpretation. They build then a network
in which each node corresponds to a symbol. It contains information about the symbol such
as its bounding box and the possible interpretation. Edges between nodes correspond to a
possible interpretation for the pair of symbols, and a possible relationship (e.g. subscript).
A score is given for a possible relationship and is the cost of the corresponding edge.
They consider possible minimum spanning trees, and only keep the valid ones. An invalid
tree has for example an incoherent labeling. The previous steps corresponded to a local
analysis. A global score is given to each tree, according to the total cost of the tree,
and some penalties. The tree which have the minimum score represents the expression.
It corresponds to a unique interpretation (disambiguation) of each symbol, and of each
relationship.

Rhee and Kim [18] presented a method to perform an efficient search to recognize the
structural analysis. They are dealing with handwritten expression. They propose a multi-
layer tree, to globally disambiguate local ambiguities. At each level in the search tree,
they add one stroke, and find the most likely relationships it can have with the already
considered stroke. Then each level is composed of a full interpretation of the structure up
to now, and when a stroke is added, several nodes are created for the possible identities
of the character, and the different relationships it can have with the rest of the formula.
They define a cost and an heuristic, and perform a best-first search. To reduce the search
space, they consider symbol dominance, and more importantly, they delay the symbol’s
identity recognition.

Miller and Viola [17] maintain ambiguity during the character recognition step. Then,
they calculate the probability for each symbol to be in a certain class (small letter, digit,
binary operator, and so on), and the probability to be a subscript, superscript, or inline
expression, according to the symbol recognition and to some layout properties. Then, they
use a stochastic context-free grammar (SCFG) to parse the expression. The system uses
convex hull instead of bounding boxes, models positions of characters with a Gaussian
distribution, and uses an A-star algorithm to search the space of possible interpretations.

Chen et al. [8] perform both the recognition and the understanding of the formula. After
the character recognition, they use a set of rules. There are three sets of rules used one
after the other. Mathematical rules are grammar rules for parsing and understanding the
expression. Sense-based rules are used to disambiguate the layout. Experience-based rules
handle uncertainty in expression semantics. The last two rule bases are learnt and modified

22 CHAPTER 2. BACKGROUND

by feedback. Afterwards, they use the results to build a layout tree and a semantic tree,
and then convert them into a LATEXstring.

Tian et al. [23] propose a rule-based system for both character and structure error
correction. More precisely, they recognize the expression using the method proposed by
Zanibbi et al. [28], based on BST. Then they apply some grammar rules to correct common
errors.

Garcia and Coüasnon [11] used the grammatical formalism Enhanced Position Formal-
ism (EPF) to describe the layout of an expression, and also the geometry of some symbols.
They can use it to parse a formula and recognize symbols made of lines.

Lavirotte and Pottier [15] focus on the syntactical analysis and use context-sensitive
grammar rules. They build a graph with information about the characters and their
relative size, and use graph-rewriting rules based on a context-sensitive grammar, which
allows them to perform disambiguation at the same time.

Awal et al. [3] try to optimize the symbol segmentation and recognition, and the
structure recognition at the same time, for handwritten expressions. They group strokes
together, and calculate a cost function based on a recognition score for this group to
represent a symbol and a structural score, taking into account the height and baseline of
the symbol, and some knowledge about it. The symbol recognition and segmentation uses
a neural network, and the structure of the expression is recognized using grammar rules.

Wang and Faure [25], have another approach to this problem. They do not use any
information concerning the identity of the symbol. According to the relative height of
two symbols, they define three situations. For each of them, they build a probability
distribution for the relation (subscript/inline/superscript) between symbols, according to
their relative vertical location. Moreover, they take into account the horizontal distance
between the symbols. Indeed, a vertical offset of a far symbol is not very likely to mean that
this symbol is a superscript rather than inline, but more probably due to the irregularity
of handwriting. They consider symbols three by three, to eliminate some ambiguities. For
example, with this technique, the symbol c in the expression abc will not be considered
as being a subscript of b. They add some constraints on possible triplets relations and a
propagation of context to resolve ambiguities.

In a later work [10], they focus on the segmentation of handwritten formuae, based
on how human visually perceive mathematical expression. This segmentation uses hori-
zontal and vertical projections, and groups symbols together. They use knowledge about
mathematical symbols and syntax, and about how mathematical expressions are usually
written. The relational tree obtained is used to recognize the structure of the expressions.
The structure is recognized without knowing the identity of the symbols involved.

Winkler et al. [26] have a four-step approach. After a pre-processing step, they perform
a Symbol grouping which basically handles structures like fraction lines, which contain a
group of symbol above and a group below. Then comes the (E.L.I.)-Classification (for
exponent, line, index), using relative vertical locations of symbols. For these two steps,
they use a soft-decision approach, similar to fuzzy logic. Finally they generate the output,
after a syntactic verification.

2.3. REVIEW OF EXISTING TECHNIQUES 23

Genoe et al. [12] designed an online system using a fuzzy approach. Every time a new
character is written, they recognize it with fuzzy rules and add it to an expression tree.
Then, they identify the relationship it may have with other symbols using fuzzy rules
based on the relative positioning of bounding boxes. Finally, they update the expression
tree, using tree transformation rules.

In [2], Aly et al. are interested in the correct recognition of subscripts and superscripts.
They use normalized bounding boxes as the main feature of a symbol. According to
the type of symbol (ascender, descender or small), they add a virtual ascender and/or
descender before trying to recognize the relationship. They proved that with normalized
bounding boxes, along with a special treatment of irregular characters, they can very
effectively identify the relationships, using a Bayesian classifier. Their work uses the
InftyCDB data set, which contains expressions extracted from more than 70 articles, with
different type-settings.

This work is extended to other types of relationships, such as ’above’ and ’under’, in
[1]. In this paper, the normalization of bounding boxes is explained in more details.
Furthermore, they define more symbol classes. Whereas there are usually three main
classes (ascender, descender, centered), they define six classes to handle variations in the
positioning of some symbols. They still use Bayesian classifiers and get outstanding results
on a large database. However, they assume that the symbol is always correctly recognized,
and we can expect a lower accuracy if ever a symbol of one class is recognized as being a
symbol of another class.

Conclusion Although there have been some early attempt to tackle the problem of
mathematical expression recognition back in the 70s and 80s [25, 6], this topic really
began to be researched in the 90s. A lot of papers have been published in the last 10
years, and we count 5 papers in this review, that are less than two years old.

Two facts can be noted:

• Character recognition is known to be difficult in the mathematical field, due to the
huge number of different, but yet similar, symbols. However, very few published
works (e.g., [25])consider that structure analysis could be performed beforehand. As
far as we know, no author considers that a prior inference on symbol identity (or
symbol class) can be inferred from the layout of the formula, even if Miller and Viola
[17], Rhee and Kim [18] and Suzuki et al. [9] maintain ambiguities on the character
recognition.

• Although symbol recognition is almost always performed using classifiers, only some
papers consider the use of classifiers to identify the structure [1, 2]. Several papers
use fuzzy logic, but most of them use either a baseline analysis, or graph-rewriting
methods, or grammar rules.

24 CHAPTER 2. BACKGROUND

Chapter 3

Motivations and Method Overview

In this chapter, we will explain the motivations for tackling the problem of mathematical
expression recognition in a new way, in section 3.1. Section 3.2 is to define the scope of the
project, which cannot include all kinds of mathematical expressions. Section 3.3 presents
an overview of the method used to implement the proposed system according to our
motivations. This method has been designed to work well within the defined scope.

3.1 Motivations and Hypothesis for a New Approach

3.1.1 Motivations

We explained in the previous chapter the problem of mathematical expression recogni-
tion. We have two motivations for trying a new approach. The structure of mathe-
matical formulae looks simple enough to perform its recognition without the
symbols’ identities. The huge number of different symbols makes it difficult to
recognize them directly.

3.1.1.1 Apparent simplicity of the structure recognition

There are several reasons for performing the symbol recognition prior to the structure
recognition. First, the identity of the symbols is a huge constraint on the possible structure.
For example, the recognition of

∑
allows to define spatial regions for where arguments are

to be found [21, 28] (e.g., above, below). Then, it is useful when one wants to understand
the meaning of an expression. For example, the recognition of the triplet of symbols s, i,
n on the same line allows the straight recognition of the ’sinus’ function in the structure
recognition phase, while 4 and 2 can constitute a number, and x followed by y an implicit
product.

However, the symbols do not completely specify the layout. The rules for their associa-
tion are well-structured. For instance, a superscript will never be found under its parent
symbol, but always on the top-right position. The main component in the structure recog-
nition is not the symbols but rather their positions and sizes. Some papers [2, 1, 9, 25]
have shown that the use of the bounding boxes are often sufficient for the layout analysis.

3.1.1.2 Mathematical symbols are sometimes complicated

As we pointed out earlier, the range of symbols and rules used to write mathematical
expressions is not fixed. The common symbols and structural rules are only a subset of
a possibly infinite set, for symbols and new meanings for their association happen to be

25

26 CHAPTER 3. MOTIVATIONS AND METHOD OVERVIEW

invented. Indeed, new science areas keep appearing, bringing with them a need for new
mathematical notation.

Quantum mechanics, for example, defined a new use of < and | to denote quantum
states. The capital Greek letter Σ does not always denote a summation. The symbol <
represents a comparison between numbers in 1 < 2, can be used as a kind of bracket in
〈x, y〉, or in the definition of some mathematical objects in (C, <). These are examples
where existing symbols are reused with a different function. It is also possible to find
completely new symbols.

Therefore, we should take this fact into account to recognize mathematical expressions.
A convenient way of dealing with that problem is to give less influence to the symbol’s
identity. In most systems, the symbol recognition determines how the structure is recog-
nized. A new symbol, which will not be recognized can provoke dramatic consequences in
the structure analysis.

Similarly, when rules, written by hand, drive the structure analysis, the appearance of
new relationships between symbols may compromise the recognition. For example, ≤ often
represent an order between numbers. It usually have an argument on its left, and one on
its right. However, in mathematics, this symbol is sometimes subscripted, as in ≤s.

The spatial relationships between symbols are well-defined, in a finite number (subscript,
superscript, and so on), but relationships can appear in a context in which they usually
do not, as in the previous example. As a result, the recognition of relationships should be
as less influenced by the symbol identity or class as possible.

3.1.2 Hypothesis

We believe that the symbols’ identity is not necessary for the structure recog-
nition . Moreover, we think that the symbols can be classified using only their
bounding box and the context available (Figure 3.1).

When we look at different symbols individually, we can see different spatial behaviours.
For example, the relative position of a superscript, as we can see on Figure 3.2, will not
be locally the same, when the symbol is a ’b’ or a ’q’. At a global level however, all
superscripts are supposed to be written on the same line (Figure 3.3).

If different classes of symbol produce different layouts, our hypothesis is the following.
If some layout is observed, it should be possible to tell which classes of symbol are likely to
have produced it. For example, we can estimate that the layout presented on Figure 3.4
corresponds to a descending symbol, subscripted, and followed by a small symbol.

To recognize it, we intuitively look at how symbols are positioned with respect to each
other. A human would consider the whole layout to make a decision, but we think that the
decision could be taken given a smaller amount of context. We call context of a symbol
the information about the symbol itself (e.g. bounding box, class of symbol), but also
about its parent and children. The important features are their relative size and position,
and the kind of relation they have with each other. For example, in abc

d, the context of
the symbol ’b’ would contain:

3.1. MOTIVATIONS AND HYPOTHESIS FOR A NEW APPROACH 27

Figure 3.1: Hypothesis. Left: the context help classify the symbols. Right: the symbols’
identity is not necessary for the structure recognition

Figure 3.2: Different relative position of a superscript

Figure 3.3: Arguments are on the same line

• Parent: ’a’, inline

• Child: ’c’, superscript

• Child:’d’, subscript among other things.

28 CHAPTER 3. MOTIVATIONS AND METHOD OVERVIEW

Figure 3.4: A Layout

We want to recognize the expression from the layout. For our analysis, we reduce
the symbols to their bounding box. Recognizing the structure without any clue on the
identity of the symbols is not an easy task. Indeed, different expressions, carrying different
meanings can have the same layout. An example, taken from the survey by Chan et al.
[5] is presented on Figure 3.5.

Figure 3.5: Similar layout (example from [5])

However, if there is a similar layout but we know the relationships between the symbols,
it may help to disambiguate the expression, that is, to find the symbols classes. The
example on Figure 3.5 shows two formulae with a similar layout: dx and gx. If we know
that x is a superscript in the first case whereas it is inline in the second case, we can infer
that the first symbol is an ascending symbol in one example and a descending symbol in
the other one.

3.2 Scope of the project

3.2.1 Complexity of Mathematical Expressions

Trying to recognize all kinds of formula is a huge task, so we will focus on mathematical
expressions with limited complexity. We define the complexity of a formula in terms of
order:

• Order 0: a formula of order 0 is only a one-dimensional sequence of symbols. It
contains no subscript, superscript, etc. Some examples are given below.

a + b−N

∑
a× φ

3.2. SCOPE OF THE PROJECT 29

• Order 1: a formula which contains only one level of nested structures. That is, for
example, when subscripts and superscripts are expressions of order 0. Here are some
examples:

ap + bi+1

N∑

i=0

ai+1 + N

• Order n: formulae where nested structures are of order n− 1.

Formulae of order 0 may look easier because one-dimensional, hence close the typical
OCR. However, we use only spatial features in this project, so the amount of information
in zero-order expressions is poor. Since we have more spatial complexity in first-order
expressions, this might help to constrain the symbol class recognition, although introducing
the issue of relationship recognition (e.g, we have to identify subscripts).

First-order formulae can turn out to be quite complex, as we need to identify a whole
expression as a subscript for example. We define an intermediate order. A formula of
order 0.5 is a formula where nested expressions are individual symbols. For example,
ab + ce

d is a 0.5-order formula, whereas ab+c is not.

3.2.2 Extent of the Project

The aim of the project is to create a method for the recognition, general enough to
be adapted later to expressions that are outside the scope of this project. However, in a
four-month project, it is crucial to define what will be done and what is left for a further
work. This can be divided in two main points: the form of the input and its complexity.

The input is a binary image of a printed mathematical expression. We consider printed
expressions rather than handwritten ones. First, they are easier to generate automatically.
Moreover, there are less variations in the writing style. However, several techniques are
used to ensure that the system can be later adapted for different inputs.

We aim to have good results for expressions of order 0.5. We call good results an almost
perfect parenting and identification of the relationship between a symbol and its parent.
We will also consider simple expressions of order 1 and 1.5, to test the robustness of our
method and the ability of our system to adapt to more complex situations.

Not only want we to recognize the structure, but we also try to find the symbol class
using this structure. A high order means a lot of context, which should make the classifi-
cation easier. However, when expressions become more complex, the structure recognition
becomes harder. A compromise must be done between the difficulties arising from the
complexity and the need for context. Recognizing all kinds of symbols and all types of
relationships remains a huge task. We will focus on some classes of symbols and of rela-
tionships. They are presented in the Tables 3.1 and 3.2, along with some examples.

3.2.3 Limitations

An MSc project cannot cover the whole problem. Consequently, there are also some lim-
itations in the proposed system. We have to start from easy inputs, and make the system

30 CHAPTER 3. MOTIVATIONS AND METHOD OVERVIEW

Table 3.1: Symbol classes used
Symbol Class Examples
1 - Small symbols a, e, r, u, o, s, m, x, c, n, ...
2 - Descending symbols y, p, q, g, ...
3 - Ascending symbols A-Z, 0-9, t, d, h, k, l, ...
4 - Variable range symbols

∑
,
∏

,
⋃

,
⋂

, ...

Table 3.2: Relationships used
Relationship Class Examples
0 - Inline xy, tan, 42, 10x,

∑
n, ...

1 - Superscript pn, ba, xy, ...
2 - Subscript pa, bn, x3, ...

3 - Upper N∑
, . . .

4 - Under
∏
x

, . . .

more complex step-by-step. The implementation must however handle basic mathematical
expressions and should represent a system flexible enough, such that the proposed system
should easily be extended in a future work.

First of all, we will not consider handwritten expressions, but only printed expressions
generated with Latex, or with the Java API JLatexMath, used to render Latex expressions.
However, since we use machine learning techniques, it is also possible to train the developed
system with different inputs. We also do not consider non-connected symbols, such as ’i’,
’j’, ’=’, because we do not focus on the segmentation, and we impement a simple algorithm
for this task.

We do not focus on the whole recognition. Our approach concerns the recognition
of the structure, and how it can constrain the symbol recognition. As a conse-
quence, we are little interested in the identity of the symbols. For example, it is important
that a ’p’ is well identified as a descending letter, i.e. the confidence value for this symbol
being in this class should be high enough. However, identifying the symbol p as the small
letter ’p’ is not in the scope of this dissertation.

As a result, understanding the meaning of an expression is not the goal of the project.
For instance, we do not aim to recognize the tangent function in the formula tan(π).
Similarly, 42 will not be recognized as a number, neither will xy as an implicit product.
Finally, the training sets will not contain all symbols for each class. We consider:

• in the class ’small’, only small roman letters (e.g. ’a’),

• in the class ’descending’, only descending roman letters (e.g. ’p’),

• in the class ’ascending’, only ascending roman letters (e.g. ’b’), capital letters and
digits,

3.3. METHOD OVERVIEW 31

• in the class ’variable range’, only
∑ ∏

,
⋃

,
⋂

.

3.3 Method Overview

In this section, we will give a general presentation of the method used, and justify the
algorithms implemented, and the design of the system. A thorough description of the
design and the implementation can be found in the next chapters. First, we will show the
different steps of the recognition in our approach. Then we explain each phase.

3.3.1 Presentation of the Proposed System

The input of the system is an expression in the form of a digital binary image. Since
we focus on the structure recognition from the layout, too much information is contained
in this set of pixels. We assume that it is sufficient to consider the bounding boxes
of the symbols in order to represent the layout. Indeed, it gives us most of the useful
information, namely the size and the position of each symbol. To yield this form, we need
first to perform a segmentation of the image.

The output of the system is the recognition of the structure, and the prior recognition
of the symbols. Three tasks are necessary to obtain this output.

Parenting symbols. Given a symbol, we have to know with which symbol it is
in a relationship. For example, in ab, a is the parent of b. Due to the nested nature of
mathematical expressions, it seems more intuitive to talk about the parent of an expression.
For instance, in abc , bc should be the child of a. We can avoid this problem, in way inspired
by techniques which use minimum spanning tree to represent the relations between symbols
(for example [21]). In an expression, we define a global parent. In bc the global parent is
b, and it is then the symbol used in the parenting with a in abc . In the example abc , a
is the parent of b, and b is the parent of c. It can then be inferred that c is also in the
subscript of a.

Identifying relationships. For each pair ’parent/child’ of symbols, we must identify
the relationship between the parent and the child. For example, in ab, the relationship is
’subscript’.

Identifying symbol classes. Given the position and size of the bounding box,
and the information obtained about relationships, this task must return confidence values
for the considered symbol to be in each possible classes (small, descending, ascending,
variable range). We can then deduce the symbol class. It is the class which have the
highest confidence. For example, in ab the first symbol (a) should be identified as a small
symbol.

To parent a symbol with another one, we must see that there must be a relationship
between them. Therefore, parenting symbols and finding relationships is one task. It is
also very important to note that, in our approach, the recognition of a symbol class utilizes
its context. We use the information about its parent and children. At the same time, as
pointed out earlier, the nature of a relationship might not be clear if we do not know the
class of the symbols. It leads to a chicken-egg problem, where each task need the results
of the other one to be performed. To cope with that issue, we adopt an iterative method,

32 CHAPTER 3. MOTIVATIONS AND METHOD OVERVIEW

which consists in repeating each task, one after the other. However, this iterative process
needs to be initialized. Thus, we perform first a rough symbol classification, using the
only information available for each symbol before the structure recognition - the bounding
box.

This process is summarized on Figure 3.6. The system is fed with a binary image, which
is segmented. The bounding boxes help us perform a rough symbol classification. At this
point, each symbol is associated with a class and some confidence values. It provides
the necessary contextual information to try to identify the relationships. The context
obtained is then used to refine the symbol classification. Since the symbol classes might
have changed, we perform the relationship identification once again, and so on.

Figure 3.6: Overview of the Method

The result that should be yielded for the input bap
n is presented on Figure 3.7. The

parenting is represented by links between symbols. Each link is tagged with the relation-
ship between a child and its parent: this is the relationship identification. Each symbol
is tagged with its most likely class: this is the symbol class identification. Moreover, con-
fidence values on the symbol class and on the relationships reflect the uncertainty of the
system and the ambiguity of the layout.

3.3.2 Pre-processing

The goal of the pre-processing step is to build usable data. We want to keep it as
simple as possible. There are two problems, namely how we represent the data and how
we achieve such a representation.

The data will be composed of symbol representations. In an image, the symbol rep-
resentation is a set of black pixels. Unlike humans, computers do not see the symbols

3.3. METHOD OVERVIEW 33

Figure 3.7: Example of Result

composed by these pixels automatically as a whole. We need a global information about
symbols: a list of bounding boxes, associated with a list of spatial features. Therefore, we
have to segment the image and return the list of bounding boxes.

Segmentation The requirements are the rapidity: the segmentation is not the core of
our problem, and the robustness: most input images should be well segmented, for the
data to be usable. We detect connected components 1 with a simple two-pass algorithm.
Some symbols such as i, j or = are not connected components. For the sake of simplicity,
we ignore those symbols in our project.

List of symbols In our system, symbols are represented by their bounding box. Thus,
the result of the segmentation is a set of symbols. To build the list of symbols, we use the
fact that mathematical expressions are generally written left to right. Hence, we order the
symbols according to the left bound of their bounding box. After this step, the expression
is no longer an image, but a list of symbols (bounding boxes).

3.3.3 Symbol Classification

The symbol classification mainly considers two kinds of features. First is the information
about the symbol alone, regardless of its context. This is the properties of the bounding
box. Second is the context of the symbol. Since different classes of symbols produce
different pattern for the position of the children, we try to find the most likely symbol
class for the observed pattern. To achieve this task, we use several machine learning
artifacts. Bayesian inference performs the rough classification. The classification using
context is handled by artificial neural networks.

3.3.3.1 Rough Classification

The rough classification is the classification using no context whatsoever. It is based
on the bounding box only. We call it rough classification, because the bounding box only
gives us little information. Moreover, symbols that are in different classes can have the
same box (see example on Figure 3.8).

Since the size, height, width and position of a symbol can vary from one input to another,
we perform this classification using relative numbers. The parameter for the decision is the
ratio width/height of the bounding box. The decision is based on the fact that symbols in

1A connected component is a set of black pixels in which any two pixels can be linked by a path
containing only black pixels.

34 CHAPTER 3. MOTIVATIONS AND METHOD OVERVIEW

Figure 3.8: Example of Symbols with the same Bounding Boxes

the same class have similar bounding boxes. We can see this problem as a simple Bayesian
network, presented on Figure 3.9. If the bounding box depends on the class, we can infer
the class by observing the shape of the bounding box.

Figure 3.9: The Bayesian Network for the Ratio-Based Classifier

3.3.3.2 Classification using Context

Some available context, for example a subscript, can be used to make the classification
easier. Indeed, the relative position and size of a child gives us extra information about
the symbol itself. The idea is to have confidence values for a symbol being in each class,
given the parameters associated with the context.

We can consider two main categories of context, namely the parent, and the children.
The parameters associated with the context are:

• regarding the parent: the relative position and size of the symbol with respect to its
parent, the relationship it has with the parent, and the class of the parent,

• regarding the children: the relative position and size of the child, the relationship
(e.g. subscript) and the class of the child (e.g. descending).

It is important to note that the amount of context can vary. The leftmost symbol in an
expression is considered as the start symbol and does not have a parent. It is rare that
a symbol, especially a digit or a letter, have a full context, that is a parent, and a child
for every relationship. The worst case is when the expression is only one symbol. This
symbol have no context. The best case would be if every symbol had a child for every
relationship. That is obviously impossible, otherwise the expression would have an infinite
number of symbols. We have to handle this lack of context.

3.3. METHOD OVERVIEW 35

The parameters described before are inputs of neural networks which classify the symbol,
and return confidence values for each class. Implementing a single neural network including
the whole context would imply lots of missing values among the inputs. Moreover, several
inputs correspond to the same piece of context, so we distinguish clusters of features. The
role of one cluster would not be clear with a single network. Therefore, we opted for a
system composed by several classifiers, one for each piece of context.

It makes a difference in the way the symbols are classified. We can see the single network
as the symbol looking at its context and saying ’I am in this class! ’, whereas the multi-
classifier system would be each contextual symbol saying about the considered symbol
’This symbol is in this class! ’.

This approach enables a convenient managing of the lack of context. The different
classifiers, including the rough classifier, work separately, but are used together. They are
associated in order to return a reasonable result, as presented in the next chapter.

3.3.4 Structure Recognition

The structure recognition consists in associating symbols which are in relation with each
other (parenting), and identifying the relationship.

Since we do not know the identity of the symbols for sure, we want to implement a
flexible, adaptive method which returns confidence values rather than a crisp answer. We
use a combination of a neural network to classify the relationship between two symbols,
and of a score based on fuzzy baselines and fuzzy regions around the symbol. Moreover,
a classifier tells whether a symbol can be a non-inline of a possible parent.

Aly et al. [2] proved that some parameters such as relative size and position allows
to differentiate between subscript, superscript and on the same line. It is efficient when
we know that the pair of symbols are in a relationship, which is not always obvious. As
pointed out by Faure and Wang in [25], some symbols can be far apart but still in a
relationship, especially for the ’inline’ relationship. For instance, in xsuperscripty, x and y
are in the relation ’inline’. So we also consider the baselines to make these links between
symbols on the same line. For the remaining parenting, we use fuzzy regions, similarly to
Zhang et al. [29].

In the following, we will present these three artifacts, and explain how we use them
together to recognize the structure. For more details about how it is really designed and
implemented, report to the next chapters.

3.3.4.1 A Neural-Network based Relationship Classifier

This first classifier allows to classify the relationship existing between two symbols. It
takes into account features inferred from a pair of symbols. Even if these symbols are not
really in a relationship, it still classify the relationship. Therefore, it cannot say if the
symbols are not in a relationship.

A neural network is used to implement this part of the system. As suggested by several
papers ([25, 2]), the relevant features are the relative vertical position (D) and size (H)
of the child with respect to its parent. These were proved to be efficient to discriminate
between subscript, inline and superscript [25]. Aly et al. [2] showed that it was even

36 CHAPTER 3. MOTIVATIONS AND METHOD OVERVIEW

more efficient (99.89 % accuracy in the discrimination) when a virtual ascender and/or
descender are added to the symbols which do not have one. This however requires to know
the identity or class of the symbol. Since we do not have this information for sure, we
chose the intermediate solution of adding as features:

• the symbol’s class, and

• the parent’s class.

As a consequence, we do not have to calculate new bounding boxes. It also puts the
information regarding the classes at the same level as the other features. In [2], it implies
a deformation of the bounding box, hence a modification of the parameters D and H
presented above. Put differently, we can consider that for Aly et al., all bounding boxes
look the same, and D and H for one pair can be compared with the same parameters for
another pair, whereas in our technique D and H are somehow dependent on the symbols
classes, hence we put the symbol classes as inputs of the network. This does not give the
symbols classes a prior importance. Moreover, we consider the relationship ’upper’ and
’under’. Thus, we also need a parameter translating the relative horizontal position. We
created it, in a similar manner as D was designed in [2].

3.3.4.2 Finding Children in Class-Dependant Fuzzy Regions

Some authors, like Zanibbi et al. [28] perform the symbol recognition, and according
to the symbol, define crisp regions around it for where to find arguments (e.g. on Figure
3.10, extracted from [28]).

Figure 3.10: Examples of Symbol-Dependent Regions, from [28]

In a later work [29], they consider fuzzy regions for superscript, inline and subscript.
We define as well class-dependent fuzzy regions. In this dissertation, the regions are built
by hand, but it is possible to have the system learn them. To each class corresponds
different regions. Since the class of the symbol is not assumed to be defined for sure, we
mix the regions corresponding to each class, according to the confidence values for the
symbol’s class. We obtain regions which have two levels of fuzziness. One is due to the
fact that for a given class, fuzzy regions are set. The other one is due to the uncertainty
on the symbol class. We can see an example of how fuzzy regions are built (a) in [29] and
(b) in our project, on Figure 3.11.

When we want to find a relationship between a symbol and a potential child, we compute
the membership value for the child to be in each region. The scores obtained are combined
with the classification of the neural network, to deduce the most likely relationship.

3.3. METHOD OVERVIEW 37

Figure 3.11: (a) Fuzzy Regions in [29], (b) Fuzzy Regions in our Project

3.3.4.3 Extracting Lines using Fuzzy Baselines

While ’superscript’, ’subscript’, ’upper’ and ’under’ often correspond to relationships
between symbols close to each other, the relationship ’inline’ is more complicated. Indeed,
an inline child is seldom an argument of its parent, whereas it is often the case for the
other relationships. It is very difficult to define a region in which an inline child should be
found. We use a baseline analysis.

It looks like considering crisp baselines is sufficient for the project, because we use
Latex printed expressions. However, we aim to build a flexible system. This project
should implement a framework for a system able to recognize any kind of mathematical
formulae, including handwritten ones. We use fuzzy baselines to handle small variations
in the writing line. This has to be selective, because some nested baseline can be close to
the dominant baseline, and we do not want the fuzziness to be a source of mistake. The
fuzziness concerns the distance of the considered symbol’s baseline to the baseline of its
possible parent, but also includes the uncertainty about the symbol’s class.

3.3.4.4 Recognizing the Structure

The recognition of the structure involves the parenting and the identification of the
relationships. It relies on two observations. First, children that are not on the same line
are close to their parent. Second, inline children can be far from their parent.

Two different treatments are applied for the parenting. Inline relationships are built
based on the relationship classifier and on fuzzy baselines. Other relationships are based

38 CHAPTER 3. MOTIVATIONS AND METHOD OVERVIEW

on fuzzy regions and on the relationship classifier. We use an algorithm which is not
recursive. One passage is sufficient for the parenting. We browse the expression left to
right, assuming that children are never to be found on the left of their parent. Then, we
implemented the parenting algorithm such that a limited backtracking is required to find
the parent (see chapter ’Design’).

The inherent difference between inline relationship and other relationships led to trying
to find an inline parent before any other kind of relationship. The algorithm first checks
if the considered symbol is aligned on an existing baseline. If not, it tries to find a parent,
among the last symbols on each baseline. We also trained a classifier to determine whether
two symbols can be in a non-inline relationship. We use the confidence for the class ’NO’
in the score for ’inline’, and for the class ’YES’ in the other relationships’ scores.

If N is the number of symbols in the expression, C its complexity, and R the number
of possible relationships (here, R = 4), the worst case complexity of our algorithm is
2 × R × C × N . However, the algorithm is designed such that the complexity is usually
lower. For more details about the algorithm, report to the next chapter.

3.3.5 An Iterative Process for the Whole Recognition

The symbol classification influences the relationship identification. But if the relation-
ships change, it gives a new context for the symbols, and their classification might be
different. In this case, the relationships may differ again. To translate these mutual con-
straints, we use an iterative algorithm, going back and forth from the symbol classification
to the relationship identification.

Nothing ensures that a fixed point will be reached in the classification, because of am-
biguities that might exist. Moreover, if a fixed point is reached, we cannot prove that
the interpretation of the expression will be the right one. From these facts, two con-
clusions must be drawn. First, we should limit the number of iterations to avoid the
problem evoked before. We cannot limit the number of iterations with a threshold on the
confidence, because a high confidence does not mean a high correctness.

Most of the systems used in this project are based on machine learning techniques,
i.e. neural networks or fuzzy techniques. We aim at a flexible system, which can adapt
itself to different contexts. Besides, it should return fuzzy answers rather than crisp ones,
because it is only a first step towards the whole recognition of the mathematical expression.
Confidence values leave a choice for the final interpretation.

We create a data set which suits our problem. It contains expressions generated with
Latex. To make the system more flexible, we add a Gaussian variation of the size and
position of each symbol. We assume that it will reflect the variations existing in the
different typesets, and in the handwriting, to some extent. When we train the classifiers,
we prefer uncertain classifications rather than high accuracy. Indeed, the outputs will be
considered as confidence values. An error is not a problem as long as the actual class has a
high confidence too. Moreover, the classifiers are associated, and may correct each other’s
mistakes.

Chapter 4

Design

In the previous chapter, we explained the method we chose for building a system able
to recognize the structure of simple mathematical expressions, and to classify the symbols
using the layout. In this chapter, we focus on the practical design of our system. This in-
cludes the choice of the tools and machine learning artefacts, the setting of the parameters,
and the algorithms used.

This chapter is made of three sections, organised as follows.

• Section 4.1 presents the preliminary work, needed to ensure a good design and an
efficient implementation of the system

• Section 4.2 explains the design of the system, in terms of data representation, func-
tionalities, design of the classifiers.

• The choice and design of the main algorithms will be shown in section 4.3. These
algorithms are the segmentation of the input image, the recognition algorithm, and
the exportation and processing of the results.

4.1 Preliminary Work

To design and build a system using machine learning techniques, some preliminary work
is necessary. We have to have one or several data sets. Amongst other things, it allows us
to analyse the data, which is another requirement to build a good system. We also have
to choose the right tools to design and implement the system.

In this section, we will present these three tasks. First, we will discuss the tools we
used, and justify their choice. Then, we will present the data-sets, how they have been
constructed, and how we plan to use them. Finally, we will show the data analysis, the
major prerequisite for the choice of the parameters.

4.1.1 Tools Used

In this part, we present the tools - software and frameworks - we have been using for
the design and the implementation of the project. We will explain why they were useful,
and how we used them. We classify them into three categories, corresponding to different
steps of the project, namely, the analysis, the construction, and the implementation.

39

40 CHAPTER 4. DESIGN

4.1.1.1 Tools for Analysis

For the analysis part of the project, we used mainly two tools: Matlab and Weka.

Matlab (Worcester College Licence) Matlab is a software for numerical computing
and scientific simulation. It has its own language, based on matrices. This particularity
allows to analyze the data easily, by plotting it for example. It can also handle images in
a straightforward manner, and was used to test the segmentation algorithm.

Weka (GNU General Public Licence) Weka stands for Waikato Environment for
Knowledge Analysis. It is a free software developed by the University of Waikato. It
implements most machine learning techniques, and is an excellent framework to train and
test intelligent systems, adjust their parameters, and find the best systems. It is composed
of an API (Application Programming Interface) and a GUI (Graphical User Interface).
Amongst other functionalities, Weka allows one to import data from a database, visualize
it in function of the different data features, or even visualize classifier errors. This makes
it an excellent tools for the analysis of data.

4.1.1.2 Tools for Construction

We call ’construction’ the storage of the data-set, and the choice of the classifiers. To
choose a good classifier, we have to test the parameters and analyze the results.

Microsoft Access We used Microsoft Access because it allows a straightforward cre-
ation and manipulation of data in tables using SQL (Structured Query Language). More-
over, Microsoft Windows provides an easy way to create an Open Database Connectivity
(ODBC) with it. That made easy the interaction with Weka, which uses the JDBC (Java
Database Connectivity) - ODBC bridge to access data.

Weka This time, the GUI of Weka was used to choose the classifiers, set their parameters,
train and test them, and have a comprehensive description of their performance. This tool
is fast and easy to test different classifiers, with different parameters, and be able to keep
the best one.

4.1.1.3 Tools for Implementation

The implementation is the actual coding of the system. Due to the complexity of the
program, we used several frameworks and APIs, such as JLatexMath, JDOM and Weka.
The implementation was made in object-oriented Java, and we used Eclipse to program
it.

Eclipse Eclipse is an Integrated Development Environment (IDE) which allows an easy
and efficient programing and compiling in Java. It is a free, open-source software, released
under the Eclipse Public Licence.

Weka In the implementation part, the API of Weka was used. All the functionalities
of the GUI can be accessed through the API. It allows more flexibility. Since we want a
system made of several classifiers, we can create, train, test, save and load them with the
API, and implement the code for their association, in order to make them work together.

4.1. PRELIMINARY WORK 41

JLatexMath JLatexMath is a Java API, under a GNU Free Documentation License. It
allows to render Latex expressions in Java. We use it to simplify the generation of inputs
for the system.

JDOM (Java-based Document Object Model) According to the project’s website,
”JDOM is available under an Apache-style open source license, with the acknowledgment
clause removed” 1. It is a very simple API to read and write XML (eXtensible Markup
Language) documents. It is used in our system to save the interpretation of an expression,
in order to build a test set. The possibility of reading XML document is used to load the
test set and compare the expected results to the actual recognition.

4.1.2 The Data Sets

As for most machine learning based systems, we need a data-set. For it to be used in
our project, it must contain the following information:

• size of the formulae and of individual characters,

• position of the characters in each formula,

• identity (or at least class) of each symbol, and

• relationships between symbols.

Suzuki et al. [19] released such a data-set, very comprehensive. It contains 20.767
mathematical formulae, and more than 157.000 symbols, taken from 30 scanned scientific
articles. We will present it in a first part.

However, the comprehensiveness can be a problem. In this project, we want to begin
with very simple formulae to first test the system on simple cases. Introducing more
complex structures should come afterwards, and very complex expressions are not in the
scope of this dissertation. In the second part, we present a way to design a simpler data-set,
which should satisfy our initial needs.

4.1.2.1 Overview of an Existing Data Set: InftyCDB − 1

This data-set has been constructed by Suzuki et al. for the Infty project [19]. This
project is devoted to the recognition of mathematical formulae. The data set consists of
characters information along with some features such as their bounding box, their size,
the relationship with their father symbol, and so on. It has been built from 30 scientific
papers published in English. There are characters extracted from both plain texts and
mathematical formulae.

There are 175 different symbols, and 8 kind of relationships, namely, horizontal, left
subscript, right subscript, left superscript, right superscript, top, under and upper. A
Latex, MathML and IML equivalent is given for each formula. The data-set can be freely
downloaded on the project website (http://inftyproject.org/). The data is provided
in CSV and MS Access format, and scanned images are provided too.

1from www.jdom.org

42 CHAPTER 4. DESIGN

As explained in the previous chapter, our goal is not to recognize all kinds of expressions.
We set a limit on the complexity of the formulae we aim to recognize. Moreover, we chose
to focus mainly on Latex formulae. It is difficult to extract efficiently from this data-set
the relevant parts to our project.

4.1.2.2 Towards a New Data Set

The aim of building a new data-set is to avoid being overwhelmed by the complexity of
the existing ones. By doing so, we can consider only the symbol classes and relationships
in which we are interested for this dissertation. The advantage is that we have a total
control on the content of the data set, the features it contains, and the complexity of the
expressions it represents.

The drawback is that building a data set often involves the manual labelling of its
content. A good data set should contain as much examples as possible. Manually label
thousands of expressions requires too much time for the length of this project.

Therefore, we had to find a way of building the data set automatically. This means that
the examples must be simple enough to be labelled by a program. The simplicity might not
represent well enough what mathematical expressions are like in the real world. However,
we should remember that the data set will be used to train the individual components
of the whole system. These components do not focus on the recognition of the whole
expression, but of small parts of it. For example, the relationship classifier only consider
two symbols, independently of the rest of the formula.

Thus, the simplicity of the examples should not be an issue, as long as it represents
the context in which the symbols will be found. Since we control the way the expressions
are produced, we can exploit their writing order. The pipeline for the data set creation is
presented on Figure 4.1.

Figure 4.1: Creation of a New Data Set

a. Generation of Expressions

The process of expression generation will be used for the recognition of the expressions.
Therefore, we have to generate non ambiguous formulae, which recognition can be straight-
forward without any classification. It means that after the segmentation of the image, we
can be able to tell the class of symbols and their relationships, with the mere knowledge
of how it was produced.

4.1. PRELIMINARY WORK 43

Thus, we use a systematic approach for the symbols classes and the relationships, with a
simple reading order. We have four classes of symbols. For each class, we choose a certain
number of symbols (see Table 4.1).

Table 4.1: Symbols used in the Data Set
Symbol Class Symbols used
small a, z, e, r, u, o, s, m, x, c, v, n
descending y, p, q, g
ascending 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, Z, E, R,

T, Y, U, I, O, P, Q, S, D, F, G, H,
J, K, L, M, W, X, C, V, B, N, t, d,
h, k, l, b

variable range
∑

,
∏

,
⋂

,
⋃

The reading order associated with the relationships can be of two kinds:

• mainly horizontal: inline, subscript, superscript

• mainly vertical: upper, under

They should be associated with two different generation processes.

For the generation of horizontal structures, we use the classes ’small’, ’descending’ and
’ascending’. We produce all possible triplet of symbols for these classes and the rela-
tionships in a systematic manner. Each time we choose randomly which symbol of the
considered class will be represented. Each pattern ’class, relationship, class, relationship,
class’ is used twice to have more examples. An extract of the generated data set is shown
on Figure 4.2.

Figure 4.2: Examples in the Data Set

44 CHAPTER 4. DESIGN

A similar method is used for vertical structures. We generate a variable range symbol,
and a symbol above, one below and one inline. The last three are alternatively chosen
in each class but ’variable range’. Finally, variable range symbols can be children of
other symbols (for example, in x

∑
i). We also created this type of examples, in a similar

manner. Images are generated using the jLatexMath framework, and are the inputs of the
next step. The complete algorithms for the generation of examples are presented in the
appendix ’Algorithms’.

b. Extraction of the Symbols

The symbols are extracted from the images using our segmentation algorithm. This
step returns an ordered list of bounding boxes, representing the symbols of the expression
in our project. This is the input of the next step.

c. Recognition of Expressions

In the first set of examples, we are supposed to retrieve three symbols, left, middle
and right. According to the generation process, we can label them with their class. We
also do the parenting automatically, and label the relationships. In the second set, the
same logic applies. From the bounding boxes, we detect a leftmost symbol, which is the
variable range symbol, a top and a bottom symbol, and a rightmost symbol. We can then
automatically label the symbols and relationships.

The recognition is entirely driven by the method with which the examples are initially
created. The recognition of the expressions is then completely deterministic, and no mis-
take is possible. The information about the symbol (position, size and class) and about its
context (parent, relationship, children) is stored at the symbol level (see the ’Implemen-
tation Overview’ chapter), and allows each symbol to create its instance in the database.

d. Population of the Database

In the database, each line corresponds to a symbol. In order to train the classifiers of the
system, some features must be available, hence calculated when we create the database.
The position and size are directly deduced from the coordinates of the bounding boxes.
The class of the symbol, its parent and children are inferred from the automatic labeling.
Some features have to be calculated, such as the ratio width/height of the symbol, its
relative position and size to its parent, and the relative position and size of its children.
The relevant features are listed in Table 4.2, along with their definition.

The way Latex generates equations obeys some structural rules regarding the baselines
and the size of the symbols. Each instance in the data-set is different, due to the gen-
eration process. It uses different symbols randomly chosen in the classes, and different
relationships and arrangements. But we can still consider it redundant, because we can
find similar symbols with similar contexts. For example, abc and nbx are different, but in
the database, the line corresponding to a and the one corresponding to n are likely to be
very similar.

4.1. PRELIMINARY WORK 45

Table 4.2: Features in the Data Set
Feature Description
XMIN Left bound of the bounding box
XMAX Right bound of the bounding box
YMIN Top bound of the bounding box
YMAX Bottom bound of the bounding box
HEIGHT Height of the symbol
WIDTH Width of the symbol
RATIO Shape of the bounding box
H Relative height of the symbol to its parent
D Relative vertical position to the parent
V Relative horizontal position to the parent
RELID Relationship with the parent
CLASS Symbol class
PCLASS Class of the parent symbol
LH Relative height of the inline child (if any)
LD Relative vertical of the inline child (if any)
LV Relative horizontal position of the inline child (if any)
LCLASS Class of the inline child (if any)
EH Relative height of the superscript child (if any)
ED Relative vertical of the superscript child (if any)
EV Relative horizontal position of the superscript child (if any)
ECLASS Class of the superscript child (if any)
SH Relative height of the subscript child (if any)
SD Relative vertical of the subscript child (if any)
SV Relative horizontal position of the subscript child (if any)
SCLASS Class of the subscript child (if any)
UppH Relative height of the ’upper’ child (if any)
UppD Relative vertical of the ’upper’ child (if any)
UppV Relative horizontal position of the ’upper’ child (if any)
UppCLASS Class of the ’upper’ child (if any)
UndH Relative height of the ’under’ child (if any)
UndD Relative vertical of the ’under’ child (if any)
UndV Relative horizontal position of the ’under’ child (if any)
UndCLASS Class of the ’under’ child (if any)

This fact, combined with our willingness to have a somewhat flexible system, motivated
another choice in the data set conception. To simulate variations within expressions, we
modify slightly the position and size of each symbol. This is done after the recognition
of the expression and before the calculation of the features, to remain consistent. We
recompute the coordinates, the height and the width of the symbol, according to a random
variable corresponding to a draw from a Gaussian. The parameters are presented in Table
4.3.

The data-sets were generated by outputting a Comma-Separated Values (CSV) file,
used to populate a database.

46 CHAPTER 4. DESIGN

Table 4.3: Gaussian Variation
Parameter Mean Standard deviation
x-coordinate original x-coordinate 5% of symbol width
y-coordinate original y-coordinate 5% of symbol height
width original width 5% of symbol width
height original height 5% of symbol height

Conclusion We developed a method to create an automatically labelled data set, which
was used to train the different classifiers of the system. It was useful for the context-
driven classification of symbols, but also for the relationship classifier. The variation
introduced in the size and position of symbols also allowed us to classify some symbols
and relationships in an handwritten expression during the tests, even though it was not
in the scope of the project. Overall, the data set contains 7316 instances, automatically
generated. We also created a data set for training the rough symbol classifier. It was built
by generating individually the Latex version of each symbol used. The features are only
the ratio width/height of the symbols and their class. Each symbol appears six times in
the data-set, with different Gaussian variations. This second data-set contains overall 372
instances. A third data set is created using the examples of the first data set, to train the
classifier saying whether two symbols can be in a non-inline relationship.

4.1.3 Data analysis

Along with the data set, the analysis of the data is the crucial element of the construction
of a system based on artificial intelligence artefacts, and machine learning techniques in
particular. It consists in looking at the data and features from different point of view. For
example, we can plot the expected classification of data instances, as a function of several
parameters.

This analysis has several goals. Amongst them, we can cite:

• verifying assumptions on the data,

• making sure that our motivations and hypothesis are worth investigating,

• spotting unexpected behaviours of the data,

• choosing relevant features for the building of the classifier, or even

• understanding the possible bad performance of some classifiers.

Since the mathematical expression recognition is made of two tasks, we can split the
analysis into two categories. The first one concerns the classification of relationships. The
second one focuses on how symbols can be classified using their context.

4.1.3.1 Analysis of the Data on Relationships

The analysis of the data regarding relationships aims at proving that the features we
chose allow (i) the identification of the relationships and (ii) the building of fuzzy regions.

The parameters we use for the classification of relationships (H and D) have already
proved to be good by [2]. However, we replaced the knowledge about the parent symbol’s
identity present in [2] by the knowledge of the classes of the symbols involved.

4.1. PRELIMINARY WORK 47

Figure 4.3 shows that inline, superscript and subscript relationships can be discriminated
using these extra features.

Figure 4.3: Relationship Data in the Space (PCLASS, CLASS, H, D)

Moreover, for each parent class, there appears to be an area where all possible subscripts
(resp. superscripts) are positioned. This should make possible the construction of fuzzy
regions based on the data set.

4.1.3.2 Analysis of the Data on Symbol Classes

The analysis of the data regarding the symbol classes aims at confirming some of our
hypothesis. We use only bounding boxes. The first part shows that the shape of the
bounding box, although giving a first idea, is not sufficient to classify symbols. The
second part proves the importance of considering the context of the symbol.

The Ratio Width/Height

On Figure 4.4, we can see the values for the ratio width/height of the symbols in the
data set. We can see some areas where the classification should not be a problem. A ratio
over 1.5 corresponds to small symbols (class 1), and to ascending under 0.6. However, the
ascending class seriously overlaps the other ones, due to the high variety of symbols in this
class. But we can still infer some rules, presented in Table 4.4.

We conclude that a classification based on probability can give us a good but far from
perfect idea of the possible symbol class, and cannot be used alone.

The Importance of Context

48 CHAPTER 4. DESIGN

Figure 4.4: Ratio of Symbols

Table 4.4: Class Areas Based on Ratio
Ratio Possible Class
< 0.6 ascending
0.6 < .. < 0.75 descending, ascending or variable range
0.75 < .. < 1.5 small or ascending
> 1.5 small

We tried to train a single classifier based on all features for the symbol classification.
When we analysed the results, we noticed that most classification errors correspond to the
symbols which have little, if any, context. This leads us to building one classifier corre-
sponding to each piece of context. On Figure 4.5, we represent the data for superscripted
symbols in the space (EH,ED) (see previous section for explanations).

Figure 4.5: Data for superscripted symbols

The data points can already be clustered using these features. If we also consider the
class of the superscript (ECLASS), there is almost no overlap. Two conclusions can be
drawn:

• the context appears to help the symbol recognition, and

• a good classification should result from the separation of the classifiers according to
which part of the context they represent.

We have to note that this analysis considers the parameters to be right, especially
regarding symbols’ classes (e.g. ECLASS, or PCLASS) and the relationships. In the

4.2. DESIGN OF THE SYSTEM 49

actual classification, some errors might result from mistakes in the symbol classification
step, or in the structure recognition.

4.2 Design of the System

The design of the system includes different choices:

• the way the data (from input to output) is represented

• the way the components are associated to build the multi-classifiers

• the values of the parameters and thresholds

• the functionalities we want the system to have, other than the simple recognition of
expressions

• the way we want to display the information to the user

In Section 4.2.1, we explain how we represent the data. Section 4.2.2 presents the
design of the classifiers and their association. In Section 4.2.3, we present the design
of some additional functionalities of the proposed system. Finally, in Section 4.2.4, we
introduce the design of the user interface.

4.2.1 Representation of the Data

During the process, the form of the data changes. Indeed, the input is a binary image,
and the output should be an interpretation of the expression. The different steps of the
recognition have been identified. We must decide how to represent the data at each stage.
In this part, we will present the data representation in a chronological order, starting with
the form of the input, and finishing with the form of the output, as summed up on Figure
4.6.

Figure 4.6: Data Representation along the Pipeline

The input: a binary image

50 CHAPTER 4. DESIGN

We chose to take binary images (or bitmap) as inputs of the system. It represents the
context in which mathematical formula recognition is needed. It corresponds to the case
in which we have a printed (or handwritten) document which contains a formula that we
want to extract to obtain an electronic form, which can later be reused.

A binary image is merely a sequence of bits, which convey an information to the human
eye when they are displayed in a visual form (an image). The information a computer gets
by simply looking at the sequence is however limited. This is why we transform this data,
by segmenting the image.

Result of the segmentation: a list of bounding boxes

The segmentation algorithm reads the image and extract connected components from
it (see the ’Presentation of the Algorithms’ section). From the connected components
found, we only keep the bounding boxes. This is indeed the simplest way to represent
the layout of the expression. Each item in the list of bounding boxes is in the form
xmin, xmax, ymin, ymax. In other words, it is the left, right, top and bottom bounds of each
box.

A list of symbols when the expression is created

The list of bounding boxes is used to create the initial representation of the expression,
which is merely a list of symbols. The structure of the expression is presented on Figure
4.7.

Figure 4.7: Representation of an Expression

The ’Symbol’ entity represents the symbol only, out of its context. It is created from
the coordinates of the bounding box. It contains information about the size and position
of the symbol.

The ’Context’ entity represents the symbol in its context. It can be linked to other
symbols (Contexts) such as the parent of the symbol or its children. It also contains the
relationship the symbol has with its parent, and the confidence values on the class of
symbol and on the relationship.

4.2. DESIGN OF THE SYSTEM 51

The ’Expression’ entity is made of the list of symbols (Contexts).

The creation of the expression builds a ’Symbol’ object for each bounding box in the
list, and create a ’Context’ for each symbol. All contexts are stored in a list, which is the
’Expression’.

The classification builds a tree

The aim of the classification and the recognition is to find the relationships between
symbols, and to find the symbols classes. This can be seen as linking symbols together,
and adding information to the existing structure. From the initial list, a tree is created.
Similar tree representations can be found in the literature (such as [21, 9, 28]).

Each node corresponds to a context. As explained before, the information contained in
a node is:

• the corresponding symbol

• the relationship with its parent

• the regions where children should be found

• the distributions of confidence values over the possible symbol classes, for each clas-
sifier (see next part)

• the distribution of confidence values over the possible relationships with the parent

Each child of a node corresponds to a child of the symbol represented by this node. There
is also a backward linking to access the parent of the symbol. The tree representation is
summed up on Figure 4.8.

A partial example of such a tree is showed on Figure 4.9, for the expression bap
n.

Exporting the results as an XML document

Once the classification is done, we want to be able to save the result. There are several
goals for that. First, it could be used by another program to finish the recognition. Indeed,
we classify symbols and recognize the structure, but some work must still be done. For
example, the recognition of each symbol, or even the equivalent of the lexical pass described
in [28]. The result saved can also be reused by the program, to load the interpretation of
a formula for example.

We have chosen an XML form, because it translates well the nested structure of a math-
ematical expression. Moreover, an XML document is a tree structure, like our expression
representation is. The document must contain the important information:

• The expression, its width and height

• The symbols, their class, relationship, bounds, and the confidence values for each
class and relationship

52 CHAPTER 4. DESIGN

Figure 4.8: Expression Tree

Figure 4.9: Example of an expression tree

The root of the document is the expression node. It has only one child which is the
representation of the root of the expression tree. It is a symbol node. A symbol node has
three attributes:

4.2. DESIGN OF THE SYSTEM 53

• The id attributed in the creation of the expression

• The symbol class id

• The relationship id

The symbol id is used when the XML interpretation is loaded by the program, in order
to be able to identify the correspondence between a node in the expression and a node in
the document. It has several children:

• A bounding box node, which contains the coordinates

• A symbol class node, which contains the confidence values for each class

• A relationship node, which contains the confidence values for each relationship

• A symbol node for each child

An example is shown on Figure 4.10.

Figure 4.10: Expression Interpretation in XML

4.2.2 Practical Design of the Classifiers

The part of the system that actually recognizes the expression is made of classifiers,
such as neural networks, or fuzzy systems. The system is an association of these different
entities. Each component is designed for a particular role. We have to choose the best
suited system to represent it, and adjust the parameters, define how it will be trained
for example, or also which kind of results is expected. We also have to choose how these

54 CHAPTER 4. DESIGN

different components are associated together, how their outputs are mixed to obtain the
final result.

The system is made of two parts, one for each task. We will present first the Symbol
Classifier (SC), and then the Relationship Classifier (RC).

4.2.2.1 Symbol Classifier

Its aim is to classify the symbols into one of the four classes ’small’, ’descending’, ’as-
cending’, ’variable range’. It would not be appropriate to give a straight answer because
we consider only the bounding boxes. Rather, we should return the confidence values for
the symbol to be in each class.

According to our plan, we want to consider the context of the symbols to classify them.
We will use a system composed of several classifiers. Indeed, having only one classifier
poses two problems:

• At the first step of our algorithm, we perform a first symbol classification when no
context is available, so we have to have a classifier which does not take the context
into account.

• All symbols have not the same amount of context. Some symbols might have very
little context. For instance, in bap

n, n only have a parent, but no child. If we
have a single classifier, the absence of context may be understood as an important
information, when it is rather a lack of information.

We will first present and justify the choice of the multi-classifier. Then, we will explain
how the parameters are chosen, and how the components are trained.

Form of the classifier

The system chosen is a multi-classifier which can be adapted to each symbol, given its
context. The different classifiers each returns a set of confidence values which are then
merged together. The system is summarized on Figure 4.11.

The output is a mix of the ratio based classifier, the parent based classifier, and the
children based classifier. This last one is made of five classifiers, one per possible child. In
the following, we will present each classifier briefly. Then we will give a justification of the
general form.

Children based Classifier. The children based classifier is made of five artificial neural
networks, one for each possible child. The 4 inputs of each classifier are

• the class of the child,

• its relative vertical position,

• its relative horizontal position, and

• relative size to the parent.

4.2. DESIGN OF THE SYSTEM 55

Figure 4.11: The Symbol Classifier

Parent based Classifier. The parent based classifier looks at the relative position and
size of the symbol to its parent. It also takes into account the parent’s class, and the kind
of relationship (e.g. subscript) the symbol has with its parent. It is also an artificial neural
network.

Ratio based Classifier. The ratio based classifier allows to classify the symbol regard-
less of its context, using only the bounding box information. It is particularly useful for
the first step of the classification: the rough symbol classification. Indeed, at this stage, no
parenting is done, and no relationship is identified. We use a Bayesian inference system.
We assume that the ratio (or shape of the bounding box) is a consequence of the symbol
class. Indeed, symbols of the same class are likely to have a similar shape. For example,
’small’ symbols, such as ’a’, ’n’ or ’m’ generally have a ratio width/height equal or higher
than 1.

Justification of the form

The whole classifier is divided into several classifiers, associated as presented above,
because:

• The context is a variable amount of information, which must be handled in a par-
ticular way (see next paragraph).

• It is crucial to give different importance to different pieces of information. For
example, if we had a single classifier, we would not have very much control on the
predominance of the ratio information over the class of a superscript for example.

56 CHAPTER 4. DESIGN

The ratio has a strong correlation with the symbol class, whereas the child class
is not directly dependant on the symbol class. We clustered together the features
which make sense only when they are taken together, e.g the information about the
subscript is different from the one about superscript, and the information about the
parent, the children and the ratio are different kinds of information.

• The last reason was that we needed a component for the rough symbol classification,
when no context is available

Handling the lack of context

The system is made for the classification of a symbol in a full context. However, in
mathematical expressions, most symbols have an incomplete context. We thought of two
ways of handling this lack of context. First, we can ignore the classifiers which correspond
to a non-existing context. The system for a symbol which has no parent, and only a
superscript, would then be as presented on Figure 4.12.

Figure 4.12: Context-Adapted Symbol Classifier

In this approach, the symbol is classified regardless of the amount of context. In the
previous example, the result of the children classifier only considers the superscript based
classification. It amounts to saying that the other child based classifiers would have yielded
the same result as the superscript based one.

However, the missing context corresponds to a lack of information. This should be
reflected in the final confidence values. Therefore, we decided that the corresponding
classifiers should return a ’full-uncertainty’ result, an uniform distribution of confidence
over the classes. It has a smoothing effect when the results are merged.

Parameters and Training of the Components

The ratio-based classifier is a simple Bayesian inference. However, the usual Bayesian
inference takes into account the prior probability of each class. It is usually computed
by calculating the frequency of each class in the data set. In our data set we have more

4.2. DESIGN OF THE SYSTEM 57

Table 4.5: Parameters of the Symbol Classifiers
Classifier Parameters Number of examples Accuracy
Parent-based Learning rate: 0.3 2981 72.2%

Momentum: 0.2
Epochs: 500

Inline child based Learning rate: 0.3 1553 70%
Momentum: 0.2
Epochs: 500

Other child based Learning rate: 0.3 About 800 About 98%
Momentum: 0.2
Epochs: 500

ascending symbols, but it does not mean that ascending symbols occur more often in
equations. We modified the inference by giving each class the same prior, so we have:

P (class | ratio) =
P (ratio | class)

P (ratio)
× α

where α is a normalizing constant.

This classifier is built and trained with Weka. It only classifies well 251 out of 372
examples (67.5%). It can be due to two facts. As we saw in the analysis of data, there are
severe overlaps in the distribution of ratios for each class. Besides, this training is done
considering the prior on symbol class, which will be removed in a later step, within the
classification algorithm.

The neural networks are trained with a 10-fold cross validation. The parameters are
summarized in Table 4.5. The percentage of well-classified examples is also shown. They
all have 7 inputs (3 numerical for parameters (H-, D- and V -like)2 and 4 binary for the
class of the parent or child (PCLASS, LCLASS, and so on)).

A low accuracy is not always a problem, because (a) the classifiers will be associated,
and some mistakes will be corrected by the other classifiers, and (b) the confidence values
are more important than the classification in this context.

For the final classification, the outputs of each classifier are mixed. The confidence
values are weighted sums of the different outputs.

Final = α× Ratio-based + β× Parent-based + γ× Children-based

The children-based classifier is the most important, because it contains the most inter-
esting parts of the context. It is given the highest weight (γ = 0.55). The parent is a
different part of the context, because the relative position with respect to the parent is for
example more due to the parent class than to the symbol class. It is then given a smaller
weight (β = 0.10). Therefore, is really has an effect when the confidence of this classifier
is very high. The ratio is a direct consequence of the class, but as we saw, is often not
sufficient for a good classification. The weight is accordingly moderate (α = 0.35). The
children-based classifier’s output is the average of the outputs of all child-based classifiers,
because there is no reason to give an advantage to one particular relationship.

2for the definition of these parameters, see page 58

58 CHAPTER 4. DESIGN

4.2.2.2 Relationship Classifier

The aim of this classifier is to determine, given two symbols, which is the most likely
relationship between them. Similarly to the symbol classifier, we return confidence values
for each class rather than a crisp classification. However, we aim at higher confidence
than for the symbol classification, because the relationship classifier is also used for the
parenting.

The relationship classification assumes that we know the class of the symbols involved,
even if this information is wrong. It uses this class information, along with the relative size
and position of the symbol to deduce the relationship. The components of the classifier
are a neural network, fuzzy regions and fuzzy baselines. We will present the general form
of this part of the system, describe the different components, and explain the choice of the
parameters.

Form of the Classifier

The classifier is made of several independent parts, each of which giving confidence
values on the relationships. These results are merged to give the final answer, which can
then be compared to the thresholds. The system is presented on Figure 4.13.

Figure 4.13: The Relationship Classifier

A Neural Network

The central part is a neural network. It has been trained by the data set to efficiently
recognize the relationship between two given symbols. The inputs are parameters inspired
by [25, 2]. These are:

• H - the relative size of the child to its parent: H =
hp

hc

• D - the relative vertical position of the child: D =
yp − yc

hp

4.2. DESIGN OF THE SYSTEM 59

• V - the relative horizontal position of the child: V =
xmaxp − xminc

wp

where the indices p and c stand for ’parent’ and ’child’, h is the height, w is the width,
y is the vertical centre of the bounding box, and xmin and xmax are the left and right
bounds.

V is not used by Aly et al., and has been defined for this project, to facilitate the
differentiation of subscript and under, and of superscript and upper. The idea is that,
while H and D can be very similar for the ’subscript’ and ’under’ relationships, V can
make the difference, being positive for ’under’ and negative for ’subscript’.

These parameters have been proved by Aly et al. [2] to be efficient. However, they use
normalized bounding boxes to calculate them. To do so, they have to know the identity
or class of the symbol, and they add a virtual ascender (to the ’small’ and ’descending’
symbols) and a virtual descender (to the ’small’ and ’ascending’ symbols). We do not
want to modify the bounding boxes, and we want to keep as much uncertainty as possible.
Instead of normalizing bounding boxes, we also set the parent and child classes as inputs
of the network.

Fuzzy Regions

The use of fuzzy regions for the structure recognition was influenced by the work of
Zhang et al. in [29]. The aim of this system is to assist the neural network to classify the
relationships, but also to tell when the symbols are not in a relationship, which the former
network cannot do. It is particularly useful for the parenting task. The fuzzy regions
are used for all relationships except ’inline’, where fuzzy baselines are used instead. They
consist of a crisp region, and a fuzzy area. Examples of how fuzzy regions are build can
be seen on Figure 4.14.

Figure 4.14: The Fuzzy Regions

60 CHAPTER 4. DESIGN

To evaluate the confidence for a child symbol to be in a particular relationship with a
possible parent symbol, we compute the membership value for the center of the left bound
of the child in the corresponding parent’s fuzzy region, as we can see on Figure 4.15.

Figure 4.15: Membership Values Computation

Fuzzy Baselines

Unlike the other children, an inline child is not necessarily close to its parent. It makes
the use of regions more difficult. However, by definition, an inline child is on the same
line as its parent. Baselines are the lines where symbols are written. The position of
the baseline of a symbol mainly depends on its class, as shown on Figure 4.16. This
relative position could be learnt if we had a data set with this information. Because of
the limitations on time, we decided to calculate it by hand. In fact, our project focuses
on printed Latex formulae, where the position of the baseline is the same for all symbols
of the same class. These positions are presented in Table 4.6, expressed relatively to the
symbol’s height.

Figure 4.16: Position of the Baseline

Because we produce a flexible solution, we handle the possible variation of the writing
line by considering fuzzy baselines. For a pair parent/child of symbols, we proceed as
follows. First, we calculate the baseline of the parent, given its class. Then, we look at
the possible baselines of the child, and calculate a confidence score based on the distance
from the parent baseline and on the confidence of the child class.

4.2. DESIGN OF THE SYSTEM 61

Table 4.6: Baseline Positions
Class % of the symbol’s height
small 100
descending 70
ascending 100
variable range 75

The width of the fuzzy baseline depends on the size of the symbol, but the general shape
is presented on Figure 4.17. It shows the confidence as a function of the distance between
the baselines compared, in pixels.

Figure 4.17: Baseline Score

Use of the Relationship Classifier

The relationship classifier is used for the identification of relationships, but also for
the parenting task. The classification does not involve a simple mixing of the different
classifiers, as in the symbol classification. The algorithm for this task will be described
later. For the parenting task, an extra classifier is defined. The possible-child classifier,
which, given two symbols, tells if the second can be a non-inline child of the first one. This
decision tree takes into account the relative size and position of these symbols, as well as
their classes.

When we try to find the relationship of a symbol, we first check if it can be on the same
line as another symbol. We combine the confidence value given by the neural network,
the baseline score and the confidence of not being a non-inline child, considering each
possible parent. If no inline parent is found, we check if the symbol can be the child of
another symbol, using the corresponding confidence values for the neural network, the
fuzzy regions and the possible-child classifier.

Parameters and Training of the Components

Relationship Classifier

To train the neural network, we only consider the examples in the data set which corre-
spond to symbols having a parent. The neural network has actually 11 inputs. Three are

62 CHAPTER 4. DESIGN

numerical (H, D and V), and eight are binary (PCLASS = 1 . . . 4, CLASS = 1 . . . 4).
We have 8 neurons in the hidden layer, and 5 outputs, one for each relationship. For the
training, the learning rate is 0.2, the momentum is 0.2 and the number of epochs is 500.
In the training set, there are ten times more inline, superscript and subscript relationships
than upper and under. Thus, we used a cost matrix to train the network, such that there
is no preference in the final classification for the first three relationships. 2977 of the 2981
training examples are correctly classified by the final network, but we have to remember
that this network cannot tell if two symbols are not in a relationship.

Possible-Child Classifier

The possible-child classifier is a decision tree. It is trained with 3875 pairs of symbols,
either inline or not in a direct relationship, and 3463 pairs of symbols in one of the four
non-inline relationships, using the J48 algorithm. It has been trained with a minimum
number of objects per leaf set to 30. The training with a 10-fold cross-validation reached
95.9% of correctly classified instances.

Fuzzy Baselines

The fuzzy baselines are built by hand from the observed relative position of the baseline
for each class. They are used to calculate a baseline score, which have two levels of
fuzziness. The first one is based on the distance of the baseline to the parent’s baseline.
The score is computed as follows:

b1 =
α

α + d

where d is the distance and α is a parameter based on the height of the symbol (α =
16% × H). Indeed, if the fuzziness was independent from the size of the symbol, small
symbols would have a higher risk to be misclassified as inline.

The second level of fuzziness is the uncertainty on the symbol class. The score b1 is
multiplied by the confidence on the symbol class to obtain the final baseline score.

Fuzzy Regions

The fuzzy regions are defined according to some statistics regarding the data set. For
each class, and each relationships, we retrieve the mean and standard deviation of the
parameters D and V . The means allow to define the center of the crisp regions, and the
standard deviations their width and height. If X and σX are the mean and the standard
deviation of X, given the definitions:

D =
yp − yc

hp

V =
xmaxp − xminc

wp

we define the coordinates of the crisp region:

xmin = x− w ∗ (V + σV)
xmax = x− w ∗ (V − σV)
ymin = m− h ∗ (D + σD)
ymax = m− h ∗ (D − σD)

4.2. DESIGN OF THE SYSTEM 63

where x is the right bound of the symbol, w and h its width and height, and m its vertical
center. The margins, or fuzzy areas, are computed using the relative size of the symbols,
represented by the parameter H. The vertical (top and bottom) and horizontal (left and
right) margins are calculated as follows:

hmarg =
1
2
(

h

Hmin
− hcrisp)

vmarg =
1
2
(

h

H
− wcrisp)

where H is the parameter
hp

hc
, h and w are the height and width of the symbol, and hcrisp

and wcrisp those of the crisp regions. This is summarized on Figure 4.18.

Figure 4.18: Building the Fuzzy Regions

For the relationships upper and under, the calculations are different, because the training
set does not represent the complex reality. Indeed, in the training set, there is always at
most one symbol above and one under. Unlike superscripts and subscripts, the horizontal
positions of these children change when there is more than one symbol. The regions’
vertical bounds are still defined as before. The horizontal bounds are:

• Left bound: for the crisp region identical to the left bound of the symbol’s bounding
box ; for the fuzzy region, the left bound of the symbol minus 15% of the symbol
width

• Right bound: for the crisp region, calculated as before, for the fuzzy region, add 15%
of the symbol’s width

Finally, the training set does not have upper and under relationships for small, descend-
ing and ascending symbols, nor subscripts and superscripts for variable range symbols.

64 CHAPTER 4. DESIGN

Therefore, we build the corresponding regions with the parameters relative to other sym-
bol classes. For example, the parameters of variable range symbols are used to build the
fuzzy region ’upper’ of a small symbol.

Associating the Classifiers

When the algorithm parents symbols and labels relationships, the different classifiers are
used, and a weighted sum of the values they return is calculated. A different treatment is
applied depending on whether the relationship is inline or not. The weighted sum is then
compared to a threshold. In this project, we found that 0.55 was an acceptable threshold,
i.e. giving good results.

The coefficients for the inline relationship are

• Relationship Classifier: 1, low because it cannot tell whether the considered symbols
are in a relationship

• Possible-Child Classifier: 1, low because the answer ’No’ of this classifier can mean
either inline or no relationship

• Fuzzy Regions: 0, because there is no fuzzy region for this relationship

• Fuzzy Baseline: 4

It means that a low baseline score can be compensated by a high certainty of the other clas-
sifiers, but the other classifiers cannot alone classify an inline relationship. The weighted
sum is divided by 1+1+4=6 to be compared to the threshold.

The coefficients for the other relationships are

• Relationship Classifier: 1 (for the corresponding output) for the same reasons as
before.

• Possible-Child Classifier: 2, higher because the answer ’Yes’ means that the pair of
symbols are in a non-inline relationship

• Fuzzy Regions: 4

• Fuzzy Baseline: 0

The fuzzy regions are selective, but a low confidence value can be compensated by a high
confidence of the other classifiers.

4.2.3 Functionalities of the System

We do not only aim at a mathematical formula recognizer. As designer of this intelligent
system, we want to be able to test it. This adds some functionalities to the system. In this
part, we will present briefly some of these additional functionalities, that we felt important
for the system to have.

4.2. DESIGN OF THE SYSTEM 65

The list of these functionalities is:

• Manually selecting of removing the parent of a symbol

• Manually labelling symbols and relationships

• Classifying symbols only

• Classifying relationships only

• Viewing possible relationships between any two symbols

• Handling several expressions

• Exporting the interpretations to create a test set

• Comparing the recognition with the actual interpretation

Manual selection and removal of symbol’s parent

It can be useful to parent symbols by hand. For instance, when we create a test set,
we need to link symbols together in order to label the relationship. When we want to test
the relationship classifier independently from the parenting algorithm, it is also useful to
parent symbols by hand. Implementing the possibility of clicking on a symbol and change
its properties intuitively is a key part of the GUI.

Manual labelling of symbols and relationship

The other feature for the design of a test set is the possibility of manually label symbol
classes and relationships. When a symbol is selected, we should have the option of selecting
its class. If it has a defined parent, we can also select the relationship. By doing so, the
context of the symbol is updated. The data structure used is the same as the one used by
the classifier. Thus, we can for example label relationships and test the symbol classifier
only.

Classification of the symbols only or the relationships only

The system is complex, and made of several classifiers. Our classification algorithm tries
to recognize the expression through an iterative process, where the symbol classification
and the structure recognition constrain each other. It is important to be able to test each
part independently. Making the classification of the relationships only (or of the symbols
only) possible allows to assume that the symbol classification and the parenting (or the
context of the symbol) is known, and to test how a particular part of the system performs
given this information.

Relationship table

66 CHAPTER 4. DESIGN

Testing the parenting only is more difficult. Indeed, in our algorithm, the parenting is
done at the same time as the relationship classification (see next section ’Presentation of
the Algorithms’). More particularly, we parent symbols according to scores that are based
on the relationship classification. To analyse the parenting, understand errors, and adjust
scores thresholds, we need to display a ’relationship table’. To build it, we use the fact
that in most cases, the parent is on the left of its children. For each symbol, we classify
the relationship it might have with every symbol which is on its right side. An example
of this table is shown on Figure 4.19.

Figure 4.19: Relationship Table

The table is only built for analysing and designing the system. In the actual parenting
algorithm, we do not need such a complexity (O(N2) classifications, if N is the number
of symbols).

Processing several expressions at the same time

Opening an input file, processing it, analysing the results and closing it is a long oper-
ation, especially when we want to handle a test set. In this case, it is also interesting to
see the performance on the whole set rather than on each instance in the set individually.
Therefore, we allow the system to open several files in once, or to read several expressions
in a Latex file. In the workspace, we then have a list of expressions rather than only one.
The particular usefulness for the test set building is explained in the next paragraph.

Creation of a test set

The system is built by training each classifier individually. We need a big data set,
which was built automatically. This process cannot be applied to the creation of a test
set. Indeed, we have to test the whole system. In particular, the parenting cannot be tested
with a database composed of symbol instances. Therefore, we implemented the possibility
to let the designer build a test set. To do so, we can open several input expressions,

4.2. DESIGN OF THE SYSTEM 67

manually parent the symbols and classify them and their relationships. Then, the test set
should be stored as an XML file, and loaded again later to compare the recognition of the
expressions with it.

Testing the system

To evaluate how good the system is, we have to test is. That means, we have to compare
its results with expected results, which are stored in a test set. To test the system, we
open a set of expressions, the same as the one used to create the test set. Then, we ask
the system to recognize these expressions. We obtain the symbols classes, parents and
relationships. We then read the XML test set. We can finally compare the lists of symbols
in the recognized expression and in the expression from the test set.

The comparison of two expressions returns a set of performance features. It includes
the following information:

• Percentage of errors on symbol class

• Percentage of errors on relationship class

• Percentage of parenting error (when symbols are associated with the wrong parent)

• Symbol correctness score

• Relationship correctness score

The correctness score illustrate how confident the system is on the right class or rela-
tionship. These scores are explained in the chapter ’Results and Evaluation’.

4.2.4 Integration of the Classifiers in an User-Friendly Interface

It is good to have a code which can perform many actions. However, it is a waste of
time if we have to re-launch the program for every action we want to perform, and every
time we change the input. Therefore, we integrated the system in a graphical interface.
It is a benefit in time for two reasons. First, we have buttons that we can click for each
action, and in particular we can test several inputs by opening several files without closing
and starting the program again. Second, when something does not work, we can spot the
origin of that dysfunction by looking at all the information displayed.

We include in this ’user-friendly’ part of the system a set of functionalities, and a set of
features. To have more details, report to the ’Implementation’ chapter.

4.2.4.1 Functionalities of the Interface

Besides providing buttons and menus to execute the functionalities described before,
the interface should have two main functionalities:

• Display all relevant information, as well as the recognition results, and

• Allow an easy setting of inputs.

Display information and results

68 CHAPTER 4. DESIGN

The goal is to give the user and the designer of the system the important information
about the expression and the recognition. The display should be organised, intuitive, and
easy to use. This is described in more details in the following part - ’Features of the
interface’.

Set inputs

Another important function is to make the setting of inputs quick and easy. Due to our
requirements, we should be able to load one or several inputs. We have implemented four
ways of setting inputs:

• By loading binary images,

• By entering a LATEXcommand,

• By reading a LATEXfile,

• By reading an XML file.

When we click on an image file in the workspace, we can choose to open the image. We
can also click on an ’Open’ menu. We have designed a window with a text field, where the
user can type a Latex formula. It is then automatically converted into an image. We have
also implemented a Latex parser. It reads a Latex file, and retrieve the text between the
tags ’begin{equation}’ and ’end{equation}’. Each one of them is then converted into an
image. For each of these methods, the images are then segmented, and the representations
of symbols and expressions are created before it is included in the interface, to be used.

The last possibility is to read an XML file. The document should be in the form pre-
sented in the section about data representation, in the paragraph ’Exporting the results’.
In the document, the bounding box information allows us to display the layout of the
expression. The XML file should also contain the interpretation of the formula.

4.2.4.2 Features of the Interface

An organized visual display of the information is often easier to understand than a text
output in a console. The aim of an interface is to provide this display. The set of features
can be divided into five major parts:

• Display of the input

• Display of the input’s properties

• Display of the classifiers outputs

• Display of the results

• Display of the file system

We will present these features and why they are interesting.

Display of the input

4.2. DESIGN OF THE SYSTEM 69

The input display allows to see the image input - the mathematical expression - and its
segmentation. We can check if the segmentation is right. It shows the bounding boxes
of symbols. We should also have the possibility of clicking on a symbol to display its
information (e.g. width, height, class) and the result of its classification.

We should also be able to show all the visual information about this expression. For
example, we can display the baselines with their confidence, the links between symbols,
corresponding to the parenting, or the regions associated with the symbols.

Finally, we want to be able to process several inputs at the same time. Thus, the
interface contains several layers, one for each expression. Menus are provided to jump
from one input to the other.

Display of the input’s properties

When we click on a symbol, it would be interesting to see its features, so we can for
example understand the input of the classifiers and the possible mistakes.

Display of the classifiers outputs

Each part of the multi-classifier system, presented before, returns confidence values on
the symbol class and relationship with the parent. The outputs are merged to give the
final result. It is interesting to show the output of every part, to see how they perform.
For each part, the output is presented in the form of an histogram, showing the confidence
value for each class.

Display of the results

When we have recognized an expression, it is interesting to show the results, in terms of
the goodness of the interpretation. It is used in two situations. For the mere recognition
of an input, we show the global confidence on the symbol recognition, on the relationship
recognition, and of the whole recognition. When we test the system, that is when we
compare the actual interpretations with the expected ones, we show a correctness score,
or accuracy.

For the latter case, we plot the results. We can choose which score to display (e.g. symbol
correctness score as a function of the number of symbols). It gives more information than
displaying simple text. We also have a window to output the results in a textual form, to
show the exact figures.

Display of the file system

The use of the system involves opening input images, loading classifiers, reading tex
files, or importing XML interpretations. To make that process easier and faster, we set
a sort of workspace. A window displays the file system of the computer, highlights files
that can be used by the program, and shows the possible actions available when a file is
clicked.

70 CHAPTER 4. DESIGN

4.3 Presentation of the Algorithms

We cannot present all algorithms used in the project, but the most interesting ones can
be found in the appendix ’Algorithms’. In this section, we will present three algorithms.
The first one is the first of the process - the segmentation algorithm. Then, the most
important algorithm, used for the recognition, is explained. Finally, we show how we can
export the results, or manually labelled interpretation, to create a test set for example.

4.3.1 Image Segmentation

For the recognition, we assume that we know the bounding boxes of the symbols. These
are the inputs of our system. To build a data set, or to construct a test set for the system,
it is more convenient to have a segmentation algorithm, so that the inputs are calculated
directly from images.

There are very efficient segmentation algorithms existing, but we chose a very simple
one. We make the strong assumption that all printed symbols are connected. This is not
the case for i, j, =, and so on, but we will ignore them for the sake of simplicity. The
chosen algorithm is a two-pass algorithm for the detection of connected components.

The Algorithm

Two-pass means that we go only twice through the image. The idea is to label the
connected components present in a binary image, with a different label for each component.

In the first pass, we label the image, and we record the equivalences between labels. To
do so, we proceed as follow, for each pixel:

1. if it is a background pixel, move to the next pixel

2. otherwise, look at the labels of the surrounding (already labelled) pixels

3. if there is no label around, mark the pixel with a new label

4. otherwise, mark the pixel with the lowest label, and record the equivalence with the
adjacent labels.

At the end of the first pass, every foreground pixel has a label. Several pixels in the
same component may have a different label, but they are all equivalent to the lowest label
in that component.

In the second pass, we update every pixel’s label with the equivalent label. Normally,
after this pass, there is only one label in each component. The goal is to retrieve the
bounding boxes, so during the second pass, we also record the minimum and maximum
coordinates in both x and y directions. The algorithm returns a list of bounding boxes.
We can see how the algorithm works on Figure 4.20.

4.3.2 The Recognition

The classification algorithm, or recognition algorithm, is the most important of the
system. It consists of two parts. First, the symbol classification only creates the neural
networks inputs and merge their outputs, for each symbol. Then, the structure recognition

4.3. PRESENTATION OF THE ALGORITHMS 71

Figure 4.20: Segmentation Algorithm

algorithm is more complicated, because it computes two tasks. If finds the parent of each
symbol, and the relationship between them. In the following, we will describe the different
steps of the recognition.

4.3.2.1 Rough Symbol Classification

The first step is the classification of every symbol based on the ratio width/height. The
Bayesian Network returns confidence values, which are divided by the prior on symbol
classes, to obtain the scores described previously. The algorithm is summarized on Figure
4.21.

4.3.2.2 Structure Recognition

We tried to design a fast structure recognition based on machine learning techniques.
We wanted to limit the backtracking and the recursion for the parenting task and the iden-
tification of relationship. Comparing each possible pair of symbols is out of the question.
Our algorithm does the parenting in one pass, with a limited backtracking.

Inline relationships are more difficult to find because the symbols involved can be far
apart. Other relationships involve symbols close to each other. Therefore, we first try to
see if a symbol is inline with another before checking for other relationships. Moreover, a
symbol can be inline with several others, whereas it can only be the subscript of one.

Given one symbol, we first check whether it is an inline child. We compute the score,
as explained before, considering only the last symbol of each baseline as possible parents.
The baselines are considered from the most dominant to the most nested. If one score

72 CHAPTER 4. DESIGN

Figure 4.21: Rough Symbol Classification

is higher than the threshold, we stop the search and do the parenting. The list of last
symbols for each baseline is updated.

If no inline parent is found, we browse the stack of last symbols seen, and we check
whether the considered symbol can be a child of one of these last symbols. Since a non-
inline child is often close to its parent, the parent is likely not to be far in the stack. Hence
the backtracking is limited. We also remember the most likely parent and relationship.
Thus, if no confidence is higher than the threshold, we check if there is no child for the most
likely parent in the most likely relationship, and we can parent the symbol. Otherwise,
the symbol is left without a parent.

The complexity of the backtracking is in the worst case 2×R× C where:

• R is the number of non-inline relationships, which also corresponds to the maximum
number of nested baselines created from one symbol

• C is the complexity, so the number of last symbols on baselines is lower than R×C,
as is the number of possible children for these last symbols.

The algorithm has just one pass, so the total complexity is 2RCN in the worst case.
Even if RC > N , not every symbol has a child for each relationship, so in practice the
complexity is less than N2. The algorithm is explained on Figure 4.22, and an example is
shown on Figure 4.23.

4.3.2.3 Symbol Classification using Context

For the symbol classification using context, the inputs of the networks corresponding to
each existing piece of context are computed, and the outputs of the networks are collected.
The final confidence values are calculated as explained before, and the class is inferred.
This algorithm is summarized on Figure 4.24.

4.3. PRESENTATION OF THE ALGORITHMS 73

Figure 4.22: Structure Recognition Algorithm

Figure 4.23: Structure Recognition Example (fon n in Abn)

4.3.2.4 The Iterations

The iterative process is initialized with the rough classification. Then, at each iteration,
three operations are performed. First, all existing relationships are undone. Then, the
structure is recognized, and finally, the symbols are classified. This is shown on Figure
4.25.

74 CHAPTER 4. DESIGN

Figure 4.24: Symbol Classification Algorithm

Figure 4.25: The Iterative Algorithm

4.3.3 Exporting the Results

The last step of the recognition is exporting the results. In fact, we do not perform
the whole recognition, and exporting the results could allow another program to read the
interpretation and perform more actions, such as the symbol recognition. Besides, it allows
to save a test set, so we can evaluate the system later.

The algorithm transforms the expression tree as it is implemented in the system into
an XML tree containing enough information to store the interpretation. The process is

4.3. PRESENTATION OF THE ALGORITHMS 75

recursive. Considering a symbol, its properties (bounding boxes, classification) are stored
in nodes. The children symbol nodes are created recursively. Indeed, each child correspond
to a nested expression and can be processed the same way.

76 CHAPTER 4. DESIGN

Chapter 5

Implementation

The implementation is the actual realization of the designed system. It consists of
the design and the writing of a program which can be run on a computer, to perform
the recognition task. It should also represent the data in an efficient way, contain the
different functionalities described before, and present the whole system in a user-friendly
interface. The translation of these functionalities into use-case diagrams can be found in
the ’Implementation’ appendix.

We chose an object-oriented approach because it translates well the division of the whole
system into different components. Indeed, we can identify:

• a core part, which represents the expression and perform the classification

• an input/output part to avoid redoing always the same things

• a graphical user interface (GUI)

The key part for implementing an object-oriented system is to model it. For instance,
we have to divide it into different classes, each of which having a particular role. The pro-
posed implementation uses frameworks (Weka, JDOM and JLatexMath) and a database,
implemented with MS Access. The developed system is divided into several packages,
presented on Figure 5.1, and explained in the appendix.

Section 5.1 explains the implementation of the expressions and the classifiers. Section
5.2 breifly presents the implementation of some additional functionalities. Section 5.3
introduces the implementation of the GUI. Section 5.4 presents the objects implementated
for the structure recognition. More details can be found in Appendix A.

5.1 Implementation of the Expressions and Classifiers

The core of the system is the recognition mathematical expressions. We presented
previously the representation of the data and the form of the classifiers. In this part, we
will enter in more details about how this representation is implemented. We will present
the different classes, their association, and their role.

5.1.1 Implementation of the Expressions

As explained before, the expressions are represented in terms of the symbols they con-
tain, considered in their context. It corresponds the five classes of objects, presented in the

77

78 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Package Diagram

class diagram on Figure 5.2. These classes constitute the content of the package ’core::me’.
We represented only the most useful methods. Most of them are self-explanatory. The
details are exposed in Appendix A and in the API provided on the attached disk.

Figure 5.2: Expression Implementation

Class Symbol

The objects in this class are very basic representations of symbols. In fact, they contain
information about the symbol itself, out of any context. A Symbol object is created from
the bounding box. It provides geometrical information such as the height, the width, the
position, or the centre of the bounding box. The symbol id is especially useful when testing

5.1. IMPLEMENTATION OF THE EXPRESSIONS AND CLASSIFIERS 79

the system.

Class SymbolClass

A SymbolClass object represents the whole classification of a symbol. Therefore, it
contains the output of all the classifiers involved in the classification, and the way they
are mixed to yield the final confidence values.

Class Relationship

Similarly, a Relationship object represents the classification of the relationship existing
between a parent and its child. It stores the output of the different classifiers, and the
final confidences.

Class Context

An object in this class is referred to by the word ’symbol’ throughout the dissertation.
Indeed, our approach not only recognizes the structure, but also uses it to find the class
of symbol. Therefore, the context of the symbol is as important as the symbol itself. A
Context object is a node in the final expression tree, since we can link it to other Context
objects. As we explained, the node also contains a SymbolClass and a Relationship
object. Its basic role is to represent the result of the recognition.

Class Expression

The Expression object allows to see the expression more globally. It is basically a list
of all symbols, sorted from the leftmost to the rightmost symbol. It provides an easy way
of retrieving the information regarding the whole expression, such as its interpretation, its
dimensions, the leftmost symbol (root of the tree structure after the recognition), or to
apply some action to all symbols (e.g., for the symbol classification).

5.1.2 Implementation of the Classifiers

The classifiers are used to recognize the structure. First, the trained classifiers, the
neural networks for example, are all stored in one independent class, whereas fuzzy regions
are defined with respect to a symbol. Fuzzy baselines do not correspond to a particular
class. Finally, the structure recognition is performed by the RelationshipFinder class.

5.1.2.1 Trained classifiers

All classifiers which need a training from the data sets are trained, saved, imported,
stored and used within a single class, Classifiers. It adapts the Weka framework to
the needs of our project. The attributes of this objects are the classifiers and the data
structures needed to build an instance that can be read by the corresponding classifiers.
They are summarized in Table 5.1.

This class implements three kinds of methods:

• save and read methods use the serialisation provided by Weka, to avoid training the
classifiers every time the program is executed.

80 CHAPTER 5. IMPLEMENTATION

Table 5.1: Implementation of the classifiers
Classifier Class Description Data Structure
SCA weka.classifiers.

bayes.BayesNet
Ratio-based symbol
classifier

dataStructSCA

SCB weka.classifiers.
function.
MultiLayerPerceptron

Parent-based symbol
classifier

dataStructSCB

SCC1..5 weka.classifiers.
function.
MultiLayerPerceptron

Children-based symbol
classifiers

dataStructSCC1..5

RC weka.classifiers.
meta.
CostSensitiveClassifier

Relationship classifier dataStructRC

YN weka.classifiers.
tree.J48

Possible not-inline clas-
sifier

dataStructYNC

• train methods do the training of the classifiers, with cross-validation, and build the
data structures.

• classify methods, such as getSymbolClassA(Context), allow the classification of a
symbol or a relationship by a single classifier, and returns a distribution of confidence
values.

This is summarized on Figure 5.3.

Figure 5.3: Classifiers Class

5.1. IMPLEMENTATION OF THE EXPRESSIONS AND CLASSIFIERS 81

5.1.2.2 Fuzzy Regions

An overview of the classes of objects related to fuzzy regions is shown on the class
diagram on Figure 5.4.

Figure 5.4: Fuzzy Regions Implementation

Each fuzzy region is represented by the class FuzzyRegion. The membership() method
calculates the membership value of a point in this region. Four regions (one per possi-
ble relationship) are grouped into a FuzzyRegions object, to represent all fuzzy regions
associated with an object. A second level of fuzziness is introduced by considering the
uncertainty on the symbol class.

Each symbol is associated with a ContextFuzzyRegions object, which contains four
sets (for the four possible symbol classes) of fuzzy regions. These are objects of the classes
SmallRegions, AscendingRegions and so on. The membership values are computed for
each regions and each symbol class, and then summed up, weighted with the confidence
of the corresponding symbol class.

5.1.2.3 Fuzzy Baselines

The baseline scores are computed as previously explained by the baselineScore(Context)
method in the Context class. The argument is the parent symbol, and the method returns
an array containing the calculated baseline scores, based on the distance of the symbol’s
baseline to the parent baseline, for each symbol class.

5.1.2.4 Structure Recognizer

The structure recognition is performed by the object RelationshipFinder. It is associ-
ated with an Expression object, in which symbols are already classified. The method

82 CHAPTER 5. IMPLEMENTATION

parentAndRelate() implements the structure recognition algorithm. The details about
the implementation of the algorithm can be found in section 5.4, and the code is presented
in Appendix B.

5.1.3 Tools for the Analysis of the Classification Results

Two classes represent tools for the analysis of a classification, namely Interpretation
and Statistics. The first one stores the information about the interpretation of an
expression, that is, the global confidence score concerning symbol classes and relation-
ships, the Latex equivalent of the expression, the XML document corresponding to the
interpretation, and the validity of the expression.

The goal of Statistics is to test the system. It stores information such as the per-
centage of symbol class, relationship or parenting error. It is used when we compare the
actual expression recognition to the expected one, saved in XML format on the computer.
More details about this class can be found in the next chapter ’Results and Evaluation’.

5.2 Additional Functionalities

Most functionalities, both crucial (e.g. the symbol classification) or annex (e.g. the
visualisation of the results), are implemented by the classes presented before, or by the
GUI (next section). In this section, we will briefly present three classes, which provide
essential tools for building and using the system: LatexParser, DatasetBuilder, and
XMLCreator.

LatexParser

This class essentially uses the jLatexMath framework to provide tools to parse Tex files
and expressions. In particular, it implements a static method, getLatexImage(String),
to create the input image from an equation. Moreover, the constructor of this class parses a
Latex file to find the equations between the tags \begin{equation} and \end{equation}.
It allows to import a set of expressions from a Latex file.

DatasetBuilder

This class provides the algorithms to generate the data sets (see Appendices A and B).

XMLCreator

This class provides the algorithms to export and import XML files, such as expressions
interpretations or lists of symbols (see ’Implementation’ appendix). It also allows the
creation of the web page used for human labelling (see ’Results and Evaluation’ chapter).
It uses the JDOM framework.

5.3 Implementation of the Graphical User Interface (GUI)

The GUI is a crucial tool for building the system, the test sets, analyze the performance,
and so on. Having a graphical interface makes the use of the system and the visualization
of the results easier and more intuitive.

5.3. IMPLEMENTATION OF THE GRAPHICAL USER INTERFACE (GUI) 83

The classes that implement the GUI are in the ’gui’ package, and are built with Java
Swing. We can divide it into four components:

• the main window, providing the basic operations and displaying the most important
results

• the results part, providing extra visual tools for the analysis of the performance

• the input part, which makes it easy to quickly input new images

• the file manager, which supports the basic input/output operations

This section will be divided into four parts, overviewing these four major components.
For more details, report to Appendix A.

5.3.1 Main Window

An instance of that window is shown on Figure 5.5. We can see different features:

• The image panel, displays the expression and information relative to it

• Two menus - a top menu and a set of buttons

• A classification panel

• A property panel

These correspond to different classes, presented on the class diagram on Figure 5.6.

The aim of the image panel is to provide a view of the expression, a way to interact
with its symbols and to display properties and results. It is implemented by the class
ImagePanel. Each ImagePanel is associated with a BufferedImage object representing
the input image, and to an Expression object to access its properties.

When a symbol is clicked on the image panel, it is selected, and its classification and
properties are displayed in the corresponding panels. On this panel, we can also choose to
display the baselines, the fuzzy regions, the parenting links, for all symbols or only for the
selected one. In the main window, the image panels are grouped into a MultiImagePanel
object, which is merely a list of image panels. It allows the GUI to handle several ex-
pressions at the same time. One can also click two symbols and make the parenting and
relationship between them. An instance of the SelectRelationship window opens to
select the type of relationship (see Figure 5.7).

The classification panel, instance of ClassificationPanel is used to display the classifi-
cation of the selected symbol. The outputs of the different symbol classifiers are presented
as histograms (automatically drawn with the Histogram class). The confidence values for
the relationship classification is also shown.

The property panel, instance of PropPanel, shows some properties of the selected sym-
bol, such as the coordinates of the bounding box, the symbol and parent class, and the
kind of relationship. It allows to quickly check the result of the recognition.

84 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Main Window

5.3.2 Result View

Different windows can display different sorts of results:

• ResultView displays textual information

• RCWindow displays classification information

• PlotWindow displays results concerning the performance of the system

5.3.2.1 ResultView

The object ResultView is a window containing a single text area, which allow to display
results and messages. An example is provided on Figure 5.8.

5.3.2.2 RCWindow

To analyse the structure recognition, in particular to understand the mistakes made, it
is useful to have a look at the relationship classification for every two symbols. The

5.3. IMPLEMENTATION OF THE GRAPHICAL USER INTERFACE (GUI) 85

Figure 5.6: GUI Class Diagram

Figure 5.7: Selecting a Relationship

RCWindow object is instantiated with an expression, and the relationship classifiers (the
neural network (RC), the fuzzy regions and baselines, and the possible-child classifiers)
are used to display the confidence values for every pair. An example is shown on Figure
5.9.

5.3.2.3 PlotWindow

When the proposed system is tested, the performance yielded for a particular test set
can be plotted in a PlotWindow (Figure 5.10), in order to make the analysis of the results
easier. One can choose the figures to plot in a top menu.

86 CHAPTER 5. IMPLEMENTATION

Figure 5.8: Textual Results

Figure 5.9: Relationship Table

5.3.3 Input Windows

Besides opening a binary image or an expression saved in an XML format, there are two
windows for setting inputs directly in the GUI. The first one (class DrawWindow) allows
the user to draw (write by hand) an expression. An instance of such a window is presented
on Figure 5.11.

The second one is a LatexToImage window. It contain a text field for the user to type
a Latex command. The class LatexParser is then used to transform this command into
an image. An example is shown on Figure 5.12.

5.3. IMPLEMENTATION OF THE GRAPHICAL USER INTERFACE (GUI) 87

Figure 5.10: Plot Window

Figure 5.11: Drawing Window

Figure 5.12: Latex Command Window

5.3.4 File Manager

Using the system involves many ’open’ and ’save’ operations. To make those quick
and easy, we implemented a FileManager object. It shows the files and folders of the

88 CHAPTER 5. IMPLEMENTATION

current workspace. Folders, usable files (XML files, images, and so on) and other files are
represented with different colours. An instance of this object is presented on Figure 5.13.

Figure 5.13: File Manager

5.4 Implementation of the Structure Recognition Algorithm

The structure recognition is performed by the method parentAndRelate() of a RelationshipFinder
object. It uses the classifiers as they were described before, and two data structures. To
access easily the last symbols on each baseline, we defined a class BaselineStructure.
The last symbols seen are accessed via a stack.

5.4.1 BaselineStructure object

The purpose of the BaselineStructure object is to access the last symbols on each
baseline, without having to browse the whole expression tree. It is made of a symbol and
a list of nested baselines. Indeed, a symbol can only be a child of the last symbol of a
baseline. For instance, in abcd, c and d cannot be children of a, but they can be children
of b, which is the last symbol on its baseline.

When an inline child is found, a new BaselineStructure is created, with an empty list
of nested baselines, and replaces the BaselineStructure of the parent. The whole baseline
structure is simplified, and ensures that the complexity does not grow exponentially with
every symbol. When a non-inline child is found, a BaselineStructure is created and

5.4. IMPLEMENTATION OF THE STRUCTURE RECOGNITION ALGORITHM 89

added to the nested baselines of its parent. Figure 5.14 shows the evolution of the main
baseline structure while the successful recognition of abc

deghk

Figure 5.14: Baseline Structure

5.4.2 The Stack of Last Symbols Seen

Every time a symbol is parented, the BaselineStructure created is added to the stack
of last symbols seen. This stack contains BaselineStructure objects rather than Context
objects so that updating the whole structure is easier during the recognition process (see
algorithm in Appendix B).

The implementation of the data set creation and of the symbol classification is explained
in Appendix A. Appendix B provides the code for the main algorithms of the developed
system.

90 CHAPTER 5. IMPLEMENTATION

Chapter 6

Results and Evaluation

We do not perform the complete recognition. Instead, we calculate confidence values
for symols’ class and for the structure recognition with missing information (the identity
of symbols). It is difficult to present the results because we cannot really define a success
rate. Evaluating such a system consists of three tasks. First, we should choose suitable
parameters, and justify why they will illustrate the accuracy of the recognition process,
and how they can reflect the performance of the proposed system. Then, we should have at
our disposition a test set, which content has not been seen in the training phase. Building
a test set involve collecting mathematical expressions and storing the expected recognition.
Finally, we actually perform the tests. We use the expressions in the test set, and compare
the actual recognition to the expected one. The results are expressed with the parameters
defined before.

6.1 Parameters used for Evaluation

This project only aims to achieve part of the mathematical expression recognition. In-
deed, we do not recognize the symbols but rather put them into classes, given the structure
of the formula. On the other hand, we cannot expect a perfect recognition of the struc-
ture, provided that the symbols identities are not known. Therefore, we should not only
count the mistakes of the system, but also estimate how confident it is on the expected
recognition. We have defined five parameters to evaluate our system. Three of them give
information about recognition errors, while the other two express the correctness of this
recognition.

6.1.1 Recognition Errors

We implemented three main tasks for the recognition. They are the symbol classification,
the parenting, and the relationship recognition. This can lead to three kinds of mistakes:
the misclassification of a symbol, an incorrect parenting, or a wrong identification of a
relationship. As a consequence, we defined three error parameters:

• Symbol misclassification, es =
number of misclassified symbols

number of symbols

• Parenting error, ep =
number of symbols with wrong parent

number of symbols

• Wrong relationship identification, er =
number of wrong relationships

number of symbols

91

92 CHAPTER 6. RESULTS AND EVALUATION

Since the parenting and the identification of the relationships are done at the same time,
it seems likely that a parenting error leads to a relationship error. However, the opposite is
not necessarily true, as the relationship classifier might be wrong for a right pair of parent
and child symbols.

6.1.2 Correctness Scores

Since we do not perform the whole recognition, the aim is not necessarily to achieve a
correct recognition, but to have a high confidence in the expected recognition. During the
design, we ensured that the final classification is not a crisp one. We want the system to
be flexible and to leave ambiguity, so that the results can be used to efficiently recognize
the characters involved. The output of the system is not only a class for each symbol and
relationship, but also a set of confidence values for each of them.

It represents how confident the system is about the results it yields. The recognition
error scores emphasis the cases where the system is wrong. The purpose of the correctness
scores is to estimate how good or bad the system is. Let us present an example. On
Figure 6.1, one can see (a) a mathematical expression, (b) the corresponding bounding
boxes, input of the recognition process, (c) the distribution of confidence for the class of
the symbol ’B’. This symbol is classified as ’small’ although the actual class is ’ascending’.
However, we can see that the confidence as ’ascending’ is almost as high as the confidence
as ’small’. Given that this symbol has little context, we can consider that the classification
is still good.

For each symbol, we defined two correctness scores. The symbol correctness score, Cs,
evaluates how confident the system is about the actual symbol class. The relationship
correctness score, Cr, concerns the confidence about the actual relationship.

6.1.2.1 Symbol Correctness

The symbol class is inferred from the output of several classifiers, as explained in the
previous chapters. The final distribution takes into account the shape of the bounding
box, and the context of the symbol. Further uncertainty is introduced in the case of a
lack of context. This could result in an error of the symbol classification, even though the
confidence in the actual class is quite high, as seen on figure 6.1.

In this project, we consider four symbol classes. The sum of confidences over all classes
being one, basic arithmetic gives us the following conclusions:

• No more than one class can have a confidence over 0.5

• No more than two classes can have a confidence over 0.34

• No more than three classes can have a confidence over 0.25

The symbol correctness score is not the confidence of the found class, but the confidence
of the expected class. The higher this figure is, the more successful the system has been.
In particular, due to the previous conclusions, and to the fact that uncertainty is willingly
introduced, we can conclude that, if this score is:

• over 0.5, the classification has been excellent, no symbol error is possible.

6.1. PARAMETERS USED FOR EVALUATION 93

Figure 6.1: A soft symbol classification: (a) a mathematical expression, (b) bounding
boxes, (c) confidence for the class of B

• over 0.4, the classification has been very good, because there is either no symbol
error (very likely) or the gap between the confidence on the recognized class and the
confidence on the actual class is very thin.

• over 0.34, the classification is good, because the actual class is at least the second
most likely, if not the most likely.

6.1.2.2 Relationship Correctness

The same reasoning leads to the relationship correctness score. Even though there are
five relationship classes, the same numbers (0.5, 0.34 and 0.25) hold to evaluate the results.
However, we are more demanding on the relationship. Indeed, the purpose of the symbol
classification is to help the actual symbol recognition task in a next step, whereas the
relationship classification aims at performing the structure recognition. Therefore, we

94 CHAPTER 6. RESULTS AND EVALUATION

expect to have better scores for the relationship correctness. However, we have to keep
in mind that the structure recognition is more difficult with bounding boxes only, and
possibly wrong symbol classes, than with the actual identity of the symbols.

Another issue arises when we calculate this score. The relationship recognition is tightly
linked to the parenting of symbols. Thus, an error on relationship can be due to a parenting
error. Then, it makes no sense considering the confidence of the actual relationship class
with the wrong parent. Therefore, we differentiate two cases. If the parent is right, the
relationship correctness is the confidence of the actual relationship class with this parent.
If a parenting error is detected, the relationship correctness is obtained by calculating the
confidence of the actual relationship with the actual parent.

6.1.3 Aggregating the Scores

These two kinds of scores represent two levels. The error scores can be calculated at a
global level, that is considering a whole expression or set of expressions. The correctness
scores are calculated at a symbol level. These scores should be aggregated, as we want to
present results at different levels:

• the performance for each expression

• the performance for each test set

• the overall performance for all test sets

In the implementation, we defined a Statistics class of objects. It represents the
performance for one expression. The information stored in this object is:

• the number of symbols

• the number of symbol class, relationship and parenting errors

• the global symbol and relationship correctness scores

as well as the misclassification by classes, a confusion matrix, and so on.

es, ep and er are obtained by dividing the corresponding number of errors by the num-
ber of symbols. Cs and Cr are directly stored by taking the arithmetic mean of the
corresponding symbols.

To calculate the performance at a higher level (test set or overall), we defined a method
merge(Statistics) in this class. We compute the aggregated scores in the following
way:

• Number of symbols N = N (1) + N (2)

• Number of errors nerr
x = n

err,(1)
x + n

err,(2)
x , for x ∈ {s, p, r}

• Correctness C =
N (1) × C(1) + N (2) × C(2)

N

and similar methods for the other parameters.

6.2. DESIGN OF THE TESTS 95

6.2 Design of the Tests

To achieve a good evaluation, we defined two tools. First, we will present the test
sets, built by hand. Then, we will show how we aim to compare our results to human
classification.

6.2.1 The Test Sets

The test sets are built by hand. Most of them contain expressions which are in the
scope of the project. That means, they respect some limitations on the complexity (0,
0.5 and 1), the form (LATEX), and the symbols they contain. Some however exceed these
limitations, and allow us to test the flexibility of the system.

Our GUI enable the opening of several expressions, their full labelling, and the ability
to export the interpretations. The test sets are made of several files:

• for the LATEXtest sets, we have a TeX file containing all expressions and we produce
an XML interpretation file after the manual labelling, within the system.

• for non-LATEXtest sets, we have a set of image files, and an XML interpretation file.

We also implemented the ability of the system to produce a text output to create a Latex
table containing the original expression, the expected interpretation, the actual one, and
the score, in order to be copied and pasted in the ’Results’ appendix of this dissertation.

Each test set contains five to ten expressions. There are several motivations for it. It
allows to split the whole test set into units with similar content (e.g. same complexity).
Moreover, if a mistake is made in the manual labelling, correcting it requires to re-process
ten expressions rather than a hundred.

Overall the test set contains 95 expressions, and 570 symbols. It is divided into 10 test
sets:

• testset-0-1 and testset-0-2

• testset-1-1 and testset-1-2

• testset-2-1 and testset-2-2

• testset-3-1 and testset-3-2

• testset-NL

• testset-HW

The limitations on the number of symbol and relationship classes make it harder to write
meaningful expressions. The formulae in the test set may not always represent expressions
of the real world, but we claim they are good to test our algorithms.

Test sets 0-1 to 3-2.

96 CHAPTER 6. RESULTS AND EVALUATION

They are LATEXgenerated test sets containing 10 expressions each. The first number
corresponds to the complexity.

• 0: order 0

• 1: order 0.5

• 2: order 1

• 3: order over 1

So the first three are within the scope, whereas the last one is outside. The second
number is 1 for relatively simple expressions, and 2 for more difficult ones, also including
some unknown (by the classifiers) symbols, such as Greek letters or different variable range
symbols (e.g.

∧
,
∨

or
⊕

).

Test set NL.

NL stands for Not Latex. It corresponds to ten expressions of different complexities
generated by other equation editors (e.g. MS Word, Google Docs). It aims at testing the
flexibility of the system regarding other forms of printed expressions.

Test set HW.

HW stands for handwritten. It contains five handwritten expressions. It is for testing
the flexibility regarding a wider variation of the writing style. It is obviously the hardest
task.

The content of these test sets can be found in the ’Results’ appendix.

6.2.2 Comparison with Human Labelling

The Oxford dictionary defines artificial intelligence as ”the theory and development of
computer systems able to perform tasks normally requiring human intelligence” 1 . Thus,
it seems natural to compare the performance of our system to the ability of humans to
perform the same task in the same conditions.

To do so, we have to ask people to take the time to manually label expressions. We had
little time to get enough results, so we specified how the inquiry should be presented.

1. It should get as many answers as possible in a very short time (one week)

2. People should see an interest in answering it.

3. It should be clear and simple, because people would not take the time to answer if
they do not understand.

4. It should be quick to answer.

1Oxford Dictionary, Oxford University Press, http://oxforddictionaries.com/view/entry/m en gb0042040
, Aug. 2010

6.2. DESIGN OF THE TESTS 97

As a consequence, the appropriate solution seemed to be in the following form:

1. On the Internet, so it is easy to reach a lot of people in a short time.

2. It is a quiz, with a score at the end, so that it is somewhat fun to answer.

3. It begins with a short explanation of the project and of how to answer the quiz, both
in English and in French, to reach more people.

4. It uses Web 2.0 technologies, to make it more intuitive to label expressions.

The implemented website, which can be found at http://mscproject.tbluche.com/ ,
is made of four pages:

• A presentation of the project and of the quiz, with illustrating pictures (Figure 6.2)

• A presentation of some examples (Figure 6.3)

• The ’quiz’ page

• The ’results’ page, which purpose is to store the answers in a database, and display
the score obtained.

Figure 6.2: Presetation of the Project

The quiz should reflect the conditions in which the recognition is done by the system,
that is with bounding boxes only. In order to keep the quiz quick and simple, we focus
only on one task, that we consider the most difficult. So the user will not be asked to
segment the image, to parent symbols, or the classify relationships, but only to label
symbols (bounding boxes) with the correct class.

Building the Quiz Page

98 CHAPTER 6. RESULTS AND EVALUATION

Figure 6.3: Presentation of Examples

The quiz page should be both easy for us to build, and easy for the user to understand
and to answer. We used Cascading Style Sheets (CSS) and HTML div tags to display
expressions (symbols bounding boxes). It is directly implemented in the system. As
explained before, the GUI can handle several expressions. We added a menu that allow to
create the HTML page. Using the JDOM framework, it creates a div for each expression,
adjusted to the expression dimension, containing a div for each symbol, with an absolute
positioning and scaling. A screenshot of the produced web page is shown on Figure 6.4.

Labelling Mechanism

To label the expression, the user has to select the class of each symbol in a list. However,
choosing the class by its name in a list is not always as straightforward as it seems. Rather,
we specified representative symbols for each class. It is a and m for the class ’small’, p for
’descending’, d for ’ascending’ and

∑
for ’variable range’.

We used the jQuery framework to implement the mechanism. When the user clicks
on a box (i.e. a symbol), ’a/m’, ’p’, ’d’ and ’

∑
’ are successively displayed in the box.

It makes the labelling process easy, especially as it produces a visual result allowing the
user to check whether their labelling corresponds to what they meant. An example of an
expression being labelled is shown on Figure 6.5.

Getting the Answers

The list of classes is compared to the expected list, to compute the score, and is stored
in a database.

To get as many answers as possible, I sent the link to the quiz to the students of the MSc
in Computer Science of the Computing Laboratory and the students of my previous school,

6.2. DESIGN OF THE TESTS 99

Figure 6.4: The Quiz Page

Figure 6.5: An item in the quiz being completed

Supélec. I also posted it on my profile on several virtual networks, such as Facebook.

The quiz contains 10 expressions, and 69 symbols. They are taken from the test set,
and they can be found in the appendix about results.

In one week, 379 people visited the website, and 101 answered the quiz. Amongst
them, only 50 labelled all symbols. Some however, labelled only several expressions. Each
expression was labelled by at least 55 people.

100 CHAPTER 6. RESULTS AND EVALUATION

Table 6.1: Performance for Different Iterations
Number of iterations 1 2 5 7 10
Symbol classification 76.49% 77.02% 77.19% 77.37% 77.19%
Relationship classification 86.32% 90.53% 90.88% 90.88% 90.70%

Table 6.2: Symbol Recognition Rate
Class Number of Symbols Correctly Classified Score
Small 225 212 94.22%
Descending 68 57 83.82%
Ascending 218 137 62.84%
Variable range 59 34 57.63%

6.3 Performance of the System

A comprehensive presentation of the performance of our system on the test sets can be
found in the ’Results’ appendix. In this part, we summarize the results for each test sets.
We tried to vary the number of iterations to compare the corresponding results. We will
present some examples and show how the system performed on them. Besides, we will
try to emphasis the extent to which our original hypothesis is verified. Indeed, our goal
was to show that the mere structure recognition could help classify the symbols, and that
symbol classes were sufficient to yield good results in the structure recognition. First we
will present the results. Then, we will evaluate them.

6.3.1 Presentation of the Results

We tested the system with 1, 2, 5, 7 and 10 iterations, and the results are presented in
Table 6.1.

The difference is not very high. In order to keep the recognition as quick as possible,
we chose 5 iterations. Given that the average number of symbols per expression in the
test set is about 6, we decided to choose a smaller number of iterations. In the following,
the results are presented, for each task, after 5 iterations.

6.3.1.1 Overall

440 of the 570 symbols (77.19%) have been successfully classified. The average symbol
correctness is 0.382. It means that on average, a symbol is often well classified, or the
actual class is considered as the second most likely. The recognition rate per symbol class
is shown in Table 6.2.

There have been 32 parenting errors (success rate of 94.39%), and 52 relationship er-
rors (9.12% of misrecognition). The overall relationship correctness is however very high
(0.797). A summary of the recognition is shown on Figure 6.6.

Here are some examples within the scope of the project, of different complexities and
well recognized:

1a2b3p tanπ bap
n

yn
l zqp e2ln2 e

∏
lnx

6.3. PERFORMANCE OF THE SYSTEM 101

Figure 6.6: Overall Recognition

Some examples are outside the scope but yield good results:

• Right complexity (order 1) but with symbols unknown by the training set

εΓπ
αp

• Higher complexity
dab

23vbn

• Non Latex form or handwritten (almost perfect symbol classification and perfect
structure recognition), see Figure 6.7.

Figure 6.7: Example of Expression Well Recognised

6.3.1.2 Per Test Set

The test sets have different contents. The complexity, content, and form of the expres-
sions are different, and some examples are not in the scope of the project, but used to

102 CHAPTER 6. RESULTS AND EVALUATION

Table 6.3: Test Sets Scores
Testset Symbol

Classi-
fication
(%)

Parenting
(%)

Relationship
Recognition
(%)

Symbol
Correctness

Relationship
Correctness

testset0 66.67 95.24 84.52 0.362 0.537
testset1 87.78 95.04 95.04 0.404 0.922
testset2 81.63 95.92 90.48 0.392 0.777
testset3 78.79 90.91 91.67 0.390 0.922
testsetNL 61.02 94.92 89.84 0.347 0.826
testsetHW 70.37 96.30 92.59 0.381 0.852

test the robustness of our system. Therefore, presenting the results for each test set is
useful. Table 6.3 summarizes the performance for each test set, including the success rate
of the symbol classification, the parenting and the relationship identification, as well as
the correctness scores.

The different distributions of errors and correctness for each test set are presented on
Figure 6.8.

Figure 6.8: Recognition by Test Set

6.3. PERFORMANCE OF THE SYSTEM 103

Table 6.4: Average Scores of Human Labelling
Equation Number of symbols Test set Number of answers Average score (%)
1 5 0-2 97 59.82
2 10 1-1 78 65.63
3 7 1-2 74 68.92
4 5 2-1 64 55.80
5 9 2-2 59 74.92
6 6 2-2 59 63.28
7 8 3-1 59 63.56
8 7 3-1 57 61.18
9 7 NL 56 59.16
10 5 HW 57 75.69

Table 6.5: Human Confusion Matrix
classified as ¿ small descending ascending varrange
small 1200 158 101 20
descending 213 300 157 44
ascending 411 287 815 150
varrange 49 20 23 617

6.3.1.3 Human labelling

The human labelling only concerns the symbol recognition. The data set for human
labelling contains 10 expressions (see ’Results’ appendix). Amongst the 50 persons who
completely answer the quiz, the average score was 67.94%. Table 6.4 presents the scores for
each expression, taking into account only complete answers, that is when all the symbols
of the expression have been labelled.

We can see in Table 6.5 how people labelled the symbols. We notice that descending
and ascending symbols are more often misclassified than small symbols and variable range.

6.3.2 Evaluation

In this part, we will analyse the results, and try to explain the mistakes of the recognition.
We will show that the results are good, and that the hypothesis is verified. The test sets
contain both expressions within and outside the scope of the project. Thus, we can first
explain both how good and how flexible is the system.

6.3.2.1 Scope of the Project and Flexibility

Our project focuses on the importance of the context in the symbol classification, and has
some limitations on the form and complexity of the expressions. As we foresaw, symbols in
formulae of order 0 are not easy to recognize, because few context is available (maximum
2 symbols, a parent and an inline child). We recorded 4 parenting errors amongst the 84
symbols and the 20 expressions. In these parenting errors, we recorded 3 mistakes on the
parent’s class and 1 on the child’s class.

We reached the best results for expressions of order 0.5 (testset1), which are the ex-
pressions in the scope of the project. There have been 16 symbol misclassifications and 6

104 CHAPTER 6. RESULTS AND EVALUATION

parenting errors for 121 symbols. However, the correctness scores, which show how con-
fident the system is about the right interpretation are high (0.404 for symbols and 0.922
for relationships).

The results are lower for testset2, which contain expressions of order 1. They are
actually expressions of order 0.5 with nested expressions of order 0. The misclassifications
due to the lack of context in the nested expressions might explain this lower performance.
Testset3 contains expressions of order higher than 1, outside the scope of the project, but
the results are still good, proving the flexibility of the system regarding the complexity.

Results for testsetNL are not very good. In particular, it looks like the ascending
and descending symbols do not have the same shape (and baselines) with MS Word and
Google Docs typesets as with Latex. Indeed, 61% of the symbol misclassifications concern
ascending symbols and 17% concern descending symbols. The flexibility is particularly
observable in testsetHW, containing handwritten formulae. Even if nearly 30% of the
symbols are misclassified, the symbol correctness is promising (0.381 on average, 0.31
minimum, 0.44 maximum). Finally, the system is flexible regarding unknown symbols.
We reach some good classification of Greek letters for example, which are not present in
the training sets.

6.3.2.2 Evaluation of the Structure Recognition

We want a fast but robust structure recognition. Therefore, we use a one-pass algorithm
with little backtracking. There are two challenges in our approach. First, it seems easier to
test every pair of symbols and keep the most likely, whereas we stop investigating as soon
as a confidence for a relationship and a parent is higher than the threshold. Moreover, the
misclassification of symbols can jeopardize the recognition of the structure.

Indeed, we record overall 32 parenting errors. We found that in the 32 pairs of symbols
which should be linked, there are 15 misclassifications of parents, and 6 misclassifications
of children. Amongst the 52 mistakes on relationships, 12 correspond to an error on
parenting, 26 involve a misclassification of the actual parent, and 24 a misclassification
of the child. Provided that the relationship correctness is very high, nearly 0.8, we can
conclude that the structure recognition is good when the symbols are correctly classified.

6.3.2.3 Analysis of the Symbol Classification

The second challenge of this project was to classify the symbols using only the context
and the bounding box. The results of the recognition proved the importance of having a
lot of context. On the other hand, with fewer context, some similarities between symbol
classes can be a source of mistake.

The Importance of Context

The symbol classification is successful in 77.19% of the examples in the test sets, and
this score reaches more than 87% for testset1. The recognition is even more efficient than
human labelling in the same conditions, except for handwritten expressions.

6.3. PERFORMANCE OF THE SYSTEM 105

Table 6.6: Symbol Confusion Matrix
classified as ¿ small descending ascending Variable range
small 212 4 3 6
descending 4 57 2 5
ascending 50 26 137 5
variable range 5 13 7 34

130 of the 570 symbols are misclassified. The mistakes are mainly made in the ascending
class (63% of all mistakes). The errors for each class are:

• Small: 13 (10%)

• Descending: 11 (8%)

• Ascending: 81 (63%)

• Variable Range: 25 (19%)

More importantly, we observe that 93.8% of the mistakes are made for symbols having
only one or two pieces of context. The distribution of errors over the different amounts of
context are:

• 1 piece (a parent and no child (last symbol of a baseline), or one child and no parent
(first symbol of the expression)): 59 (46%)

• 2 pieces of context (one parent and only one child): 63 (48%)

• 3 pieces of context: 4 (3%)

• 4+ pieces of context: 4 (3%)

Sources of Mistakes

To try to understand the possible sources of mistake for the system, we build a confusion
matrix for the symbol recognition, shown in Table 6.6.

In the data analysis, we noticed that variable range and descending symbols have a simi-
lar ratio. Moreover, their baselines positions are relatively close. When there is no or little
context to disambiguate it, a variable range symbol is often misclassified as descending,
as in

ϕ
∨∧

T p

where
∨

and
∧

are classified as descending.

We also notice that capital letters have a similar ratio as small letters, although being
ascending symbols. Added to the fact that the baselines are the same, it can explain the
large number of misclassifications of ascending symbols as small ones.

106 CHAPTER 6. RESULTS AND EVALUATION

Finally, we saw in the data analysis a serious overlap in the ratio distribution of ascending
and descending. It means that some ascending letters, such as h have a typical ratio of the
descending class, and are often misclassified if there is not enough context. For example
h is well classified in

⋃

H

hn
m

T⋂
t

xb

but not in
mgh

The quiz proved that humans have the same difficulties on these symbols in the same
conditions as our system.

Chapter 7

Conclusions

To conclude this dissertation, we will first explain how our approach allowed us to get
interesting results. Then, we will evaluate to which extent the goals are met. We will
point out the cases where the proposed system works well, but also the limitations. This
will lead us to finally expose our ideas for further development of the proposed system.

7.1 Findings

We formulated the hypothesis that the structure recognition could be performed without
the symbol identities. Besides, we assumed that the bounding box of symbols, and the
context available could help recognize the symbol class.

Although a lot of exiting techniques for mathematical expression recognition define rules
(such as grammars), we wanted to have a flexible system. Mathematical notation can be
different from one research field to another, and evolves a lot. Our system should adapt
itself to those trends, but also to the variation in the writing style. To achieve this goal,
we developed a system based on machine learning techniques. Each component has been
chosen to suit the best its function. We created a training set, and a test set, to train and
build a multi-classifier system.

An iterative algorithm has been developed to exploit the mutual constraints between the
structure and the type of symbols involved. Although the symbol classification consists
in classifying each symbol individually, the structure recognition is more complex. The
relationships between symbols must be found and identified. We implemented a one-pass
algorithm including very few backtracking, that yielded a fast recognition of the structure.

The recognition returns confidence values for each symbol and relationship, rather than
a crisp interpretation. Presenting the results with confidence values should allow an easy
utilization of the system as part of a bigger one, performing the whole recognition. These
confidence values are also used to define scores, which give an idea of how good the
proposed system is.

We built a graphical user interface to make both the design of the system and the
usage of the expression recognizer quick and easy-to-use. It was also particularly helpful
for the writing of this dissertation. Finally, we designed a quiz for human users to label
expressions on the Internet. It allowed us to compare the performance of this intelligent
system to human expertise.

107

108 CHAPTER 7. CONCLUSIONS

We defined a scope for this project. The results in that scope were very good. In
particular, we showed that symbols can be successfully classified when enough context is
available. In the case of a symbol misclassification, we noticed that the confidence value
for the actual class was quite high too.
The structure recognition was fast (about 10ms) and its results were good. Indeed, a
printed expression is for humans to globally see and understand. Our approach showed
that machine learning techniques make the structure recognition possible by comparing
symbols two by two.

During the test sets design, we included expressions exceeding the scope of the project,
to test the flexibility of the system. Given the format of our training set, we were surprised
to obtain such good results.

7.2 Evaluation

The aims of this project are met. We proved that context could indeed help the classifi-
cation of symbols, even if only their bounding boxes are used. The fuzzy regions and base-
lines helped well the construction of a fast and efficient structure recognition. Moreover,
we saw that a misclassification of a symbol do not necessarily compromise the structure
recognition.

Furthermore, we had to design our own training set. We kept it very simple, and
simulated variations in the size and positions of symbols. This simplicity did not reflect
the reality of mathematical expressions, but the association of the classifiers trained from
the data set yielded good results, even on complicated formulae, proving the robustness
of the proposed system.

The results of this approach are good, provided that only the bounding boxes of the
symbols are used. However, the analysis of the results showed that symbols do not always
have enough context to be successfully classified. This can later lead to mistakes in the
structure recognition.

We have to keep in mind that the interesting part of the results is the confidence value,
because our system is only a first step towards a global mathematical formula recognition.
However, some ideas to get around the limited performance due to the lack of context are
exposed in the next section.

7.3 Ideas for Further Development

The results have proved that our hypothesis was worth investigating. The performance
concerning the symbol recognition given the context were correct, and the structure recog-
nition method was promising, even for some complicated, or handwritten structures. How-
ever, the serious mistakes done by the proposed system in some situations show a need for
improvement. In particular, the data set we used was probably too simple to be adapted
to all situations. The structure recognition is fast, but can lead to errors which jeopardize
the recognition of the remaining relationships. Some improvement is also necessary for this
part. Finally, the system should be completed to include all symbol classes, relationships,
and different writing styles, as well as the actual symbol recognition.

7.3. IDEAS FOR FURTHER DEVELOPMENT 109

7.3.1 Improving the Training Set

The training sets are simple enough to be built automatically. However, they do not
represent the possible complexity of mathematical expressions. A training set built with
a higher diversity may give a more complete image of the different structures. Some
mistakes, both in the structure and the symbol recognition could be avoided.

Secondly, during the recognition, the mistakes done in one task can give way to mistakes
in the other task. The system handles uncertainty, but the components have not been
trained with uncertain examples. Finding a way to represent uncertainty in the training
sets, or including some mistakes could add to the flexibility and robustness of the system.
The ’Infty’ project data set could be processed and used to train our system if we define
and add more symbol classes and relationships.

7.3.2 Improving the Recognition

The recognition would of course benefit from a better data set. In this project, the
data was exploited locally, by fast algorithms. A global vision of expressions may help
their recognition, as a human user naturally disambiguates the interpretation by seeing
the expression globally.

The context of a symbol is only made of the direct children and the parent, and the
bounding boxes convey very little information. The relationships are links between two
symbols, whereas the structure recognition often involve grouping symbols. For examples,
some techniques extract the symbols in the dominant baseline by looking to all symbols’
positions. We consider pairs of symbols, out of a more global context, because it is adapted
to the possible variations in the writing style. This is especially true for handwritten
expressions, in which baselines seldom have fixed positions.

For the symbol recognition, the context is often small, and this leads to misclassifications.
We could try to build a system which considers a wider context. A global part might keep
track of expression-level information, such as the different baselines, the size of the symbols
in these baselines and so on.

For the structure recognition, it might be useful to consider more than pairs of sym-
bols. The position of baselines is partially exploited in our implementation, but could
be improved by considering baselines more globally. Having a simple and fast algorithm
was our goal, but it may still be achieved if we consider a wider context in the structure
recognition as well. For example, we can try to look at the context of the symbols, when
a pair is processed.

Finally, the uncertainty about symbols’ classes is used in the structure recognition,
through the fuzzy baselines and fuzzy regions. The uncertainty about parenting links and
relationships is not exploited in the symbol recognition in our project. Keeping uncertainty
in the structure often means making the expression tree more complex. It should indeed
store the different possible interpretations. A search algorithm is then needed to find the
best one. However, investigating how to keep this uncertainty, at least for the symbol
classification may result in a better performance.

110 CHAPTER 7. CONCLUSIONS

7.3.3 Extending the Proposed System

Besides the creation of a more comprehensive data set, the system needs some improve-
ment to be a marketable system. First, we have to consider all symbol classes and all
kinds of relationships. One can also try to have a system to learn new relationships and
classes, for the system to be even more adaptable. We have to think of a way to handle
lines, such as fraction lines, overbars, minus symbols, and so on. The lines have a short
height, hence a big ratio. Their form may lead to problems, especially when creating the
fuzzy regions. The small height will surely produce small regions.

We did not focus on the segmentation. A complete system should include a segmentation
algorithm able to tell that ’=’, for example, is one symbol. If we are to use the bounding
boxes and context only, this task can be very hard, but important.

The system aims to be flexible, so we used some machine learning techniques. Some
parts however are not learnt, such as the position of baselines. It may be worth investi-
gating the possibility to have a system completely driven by machine learning artefacts.
A more general data set could make it possible. It might also be useful to return a set of
interpretations, rather than one interpretation, with a set of associated confidence values.
In order not to make the structure recognition too long and complex, using the inter-
pretations at each iteration to build this set might be interesting. The convergence of
the interpretations to the observed result seems logical. Therefore, having just a set of
intermediate interpretations might not be informative. We may avoid the convergence by
using random parameters in the recognition.

Finally, a complete system should include the recognition of the symbols. They have
already been classified, and we believe that the recognition is made easier. Indeed, we need
one classifier for each class, but the number of symbols to discriminate is smaller. The
confidence values can be used to evaluate which is the most likely symbol, whereas a crisp
classification would have been too constraining. Moreover, the identification of symbols
can use the structure recognition results. For example, the fact that a symbol has some
children may be used as features in the recognition.

Bibliography

[1] W. Aly, S. Uchida, A. Fujiyoshi, and M. Suzuki. Statistical classification of spatial
relationships among mathematical symbols. In Document Analysis and Recognition,
2009. ICDAR ’09. 10th International Conference on, pages 1350 –1354, jul. 2009.

[2] Walaa Aly, Seiichi Uchida, and Masakazu Suzuki. Identifying subscripts and super-
scripts in mathematical documents. Mathematics in Computer Science, 2:195–209,
2008. 10.1007/s11786-008-0051-9.

[3] A.-M. Awal, H. Mouchere, and C. Viard-Gaudin. Towards handwritten mathematical
expression recognition. In 10th International Conference on Document Analysis and
Recognition, 2009. ICDAR ’09., pages 1046 –1050, jul. 2009.

[4] D. Blostein and A. Grbavec. Recognition of mathematical notation. In H. Bunke and
P. Wan, editors, Handbook of Character Recognition and Document Image Analysis,
pages 557–582. World Scientific, 1997.

[5] Kam-Fai Chan and Dit-Yan Yeung. Mathematical expression recognition: A survey.
International Journal on Document Analysis and Recognition, 3:3–15, 1999.

[6] Shi-Kuo Chang. A method for the structural analysis of two-dimensional mathemat-
ical expressions. Information Sciences, 2(3):253 – 272, 1970.

[7] B. B. Chaudhuri and Utpal Garain. An approach for recognition and interpretation
of mathematical expressions in printed document. Pattern Analysis and Applications,
3(2):120–131, 2000.

[8] Y. Chen, T. Shimizu, and M. Okada. Fundamental study on structural understanding
of mathematical expressions. In IEEE SMC ’99 Conference Proceedings. 1999 IEEE
International Conference on Systems, Man, and Cybernetics, 1999., volume 2, pages
910–914, 1999.

[9] Y. Eto and M. Suzuki. Mathematical formula recognition using virtual link net-
work. In 6th International Conference on Document Analysis and Recognition, 2001.
Proceedings., pages 762 –767, 2001.

[10] C. Faure and Z. X. Wang. Automatic perception of the structure of handwritten
mathematical expressions. In Computer Processing of Handwritting, pages 337–361.
World Scientific, 1990.

[11] Pascal Garcia and Bertrand Coüasnon. Using a generic document recognition method
for mathematical formulae recognition. In Dorothea Blostein and Young-Bin Kwon,
editors, Graphics Recognition Algorithms and Applications, volume 2390 of Lecture
Notes in Computer Science, pages 236–244. Springer Berlin / Heidelberg, 2002.

111

112 BIBLIOGRAPHY

[12] R. Genoe, J.A. Fitzgerald, and T. Kechadi. An online fuzzy approach to the struc-
tural analysis of handwritten mathematical expressions. In 2006 IEEE International
Conference on Fuzzy Systems, pages 244 –250, jul. 2006.

[13] Ming-Hu Ha, Xue-Dong Tian, and Na Li. Structural analysis of printed mathematical
expressions based on combined strategy. In 2006 International Conference on Machine
Learning and Cybernetics, pages 3354 –3358, aug. 2006.

[14] John C. Handley, Anoop M. Namboodiri, and Richard Zanibbi. Document under-
standing system using stochastic context-free grammars. In ICDAR ’05: Proceedings
of the Eighth International Conference on Document Analysis and Recognition, pages
511–515, Washington, DC, USA, 2005. IEEE Computer Society.

[15] Stephane Lavirotte. Optical formula recognition. In ICDAR ’97: Proceedings of the
4th International Conference on Document Analysis and Recognition, pages 357–361,
Washington, DC, USA, 1997. IEEE Computer Society.

[16] Hsi-Jian Lee and Min-Chou Lee. Understanding mathematical expressions using
procedure-oriented transformation. Pattern Recognition, 27(3):447 – 457, 1994.

[17] Erik G. Miller and Paul A. Viola. Ambiguity and constraint in mathematical expres-
sion recognition. In AAAI ’98/IAAI ’98: Proceedings of the fifteenth national/tenth
conference on Artificial intelligence/Innovative applications of artificial intelligence,
pages 784–791, Menlo Park, CA, USA, 1998. American Association for Artificial In-
telligence.

[18] Taik Heon Rhee and Jin Hyung Kim. Efficient search strategy in structural analysis for
handwritten mathematical expression recognition. Pattern Recognition, 42(12):3192
– 3201, 2009. New Frontiers in Handwriting Recognition.

[19] Masakazu Suzuki, Seiichi Uchida, and Akihiro Nomura. A ground-truthed mathe-
matical character and symbol image database. In ICDAR ’05: Proceedings of the
Eighth International Conference on Document Analysis and Recognition, pages 675–
679, Washington, DC, USA, 2005. IEEE Computer Society.

[20] T. Suzuki, S. Aoshima, K. Mori, and Y. Suenaga. A new system for the real-time
recognition of handwritten mathematical formulas. In 15th International Conference
on Pattern Recognition, 2000., volume 4, pages 515 –518 vol.4, 2000.

[21] Ernesto Tapia and Raúl Rojas. Recognition of on-line handwritten mathematical
expressions using a minimum spanning tree construction and symbol dominance. In
Josep Lladós and Young-Bin Kwon, editors, Graphics Recognition, volume 3088 of
Lecture Notes in Computer Science, pages 329–340. Springer Berlin / Heidelberg,
2004.

[22] Ernesto Tapia and Raul Rojas. Recognition of on-line handwritten mathematical
formulas in the e-chalk system. In Proceedings of the Seventh International Conference
on Document Analysis and Recognition (ICDAR), pages 980–984, 2003.

[23] Xue-dong Tian, Si Wang, and Xiao-yu Liu. Structural analysis of printed mathemat-
ical expression. In 2007 International Conference on Computational Intelligence and
Security., pages 1030 –1034, dec. 2007.

BIBLIOGRAPHY 113

[24] K. Toyozumi, T. Suzuki, K. Mori, and Y. Suenaga. A system for real-time recognition
of handwritten mathematical formulas. In Proceedings. Sixth International Conference
on Document Analysis and Recognition, 2001., pages 1059 –1063, 2001.

[25] Zi-Xiong Wang and C. Faure. Structural analysis of handwritten mathematical ex-
pressions. In 9th International Conference on Pattern Recognition, 1988., volume 1,
pages 32 –34, nov. 1988.

[26] H.-J. Winkler, H. Fahrner, and M. Lang. A soft-decision approach for structural
analysis of handwritten mathematical expressions. In 1995 International Conference
on Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., volume 4, pages
2459–2462 vol.4, may. 1995.

[27] Qi Xiangwei, Pan Weimin, Yusup, and Wang Yang. The study of structure analysis
strategy in handwritten recognition of general mathematical expression. In IFITA ’09.
International Forum on Information Technology and Applications, 2009., volume 2,
pages 101 –107, may 2009.

[28] Richard Zanibbi, Dorothea Blostein, and James R. Cordy. Recognizing mathematical
expressions using tree transformation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24:1455–1467, 2002.

[29] Ling Zhang, Dorothea Blostein, and Richard Zanibbi. Using fuzzy logic to analyze su-
perscript and subscript relations in handwritten mathematical expressions. In ICDAR
’05: Proceedings of the Eighth International Conference on Document Analysis and
Recognition, pages 972–976, Washington, DC, USA, 2005. IEEE Computer Society.

114 BIBLIOGRAPHY

Appendix A

Implementation

A.1 Main Functionalities of the System - Use Case View

The most straightforward goal of the system is the recognition of an expression. How-
ever, we have identified in this dissertation several other useful functionalities. The most
important ones are summarized in the diagrams on Figures A.1 and A.2. We do not enter
in the details, since they have already been explained.

Figure A.1: ”Classification” use cases

A.2 Package Organization

Figure A.3 represents the organization of the developed part of the application in dif-
ferent packages. They allow to separate objects according to their function, in a logical
way. In the following, we explain the meaning associated with each package.

’Core’ Package

115

116 APPENDIX A. IMPLEMENTATION

Figure A.2: ”Import/Export” use cases

Figure A.3: Package Diagram

This package corresponds to the core of the system, that is the representation of an
expression, and its recognition. It contains two sub-packages, which are:

• ’me’ for the representation of the expression, and the symbols it is made of. It
contains the methods to access all properties of the expression.

• ’classification’ contains all artefacts allowing the classification of an expression. It in-
cludes the trained classifiers, but also the mechanism which recognizes the structure,
and the representation of fuzzy regions.

A.3. METHODS IN THE EXPRESSION IMPLEMENTATION 117

’Tools’ Package

This package contains tools corresponding to other useful functionalities. This includes
the possibility to read or write XML documents, to represent and segment images, and to
parse Latex files, and create binary images from a Latex expression.

’GUI’ Package

The ’GUI’ package focuses on every functionality related to the display of the data (e.g.
expression, properties, classification, performance), and the actions available to the user
or the designer. It contains basically all the objects corresponding to windows, panels,
menus and buttons of the interface. It is made of several sub-packages:

• ’results’ contains the windows regarding the display of the results and statistics

• ’inputs’ contains the graphical tools which allow the user to input expressions (e.g.
in the form of a LATEXcommand, or handwritten)

• ’filemanager’ contains the classes handling the workspace functionalities.

’Main’ Package

The ’main’ package is the entry point of the system. It includes a static class which
contains the parameters of the system, such as thresholds or the number of symbol classes.
The aim is to be able to modify easily some parameters, without having to change the
code of the core classes. It also include the main function, which initializes the parts of
the system and launches the interface.

A.3 Methods in the Expression Implementation

The content of package ’core::me’ has been presented in the ’Implementation Overview’
chapter. In this section, we will explain the purpose of the most useful methods presented
on the class diagram on Figure 5.2, on page 78. For further details, report to the API
provided on the attached disk.

Class Symbol. For the calculation of the membership value in fuzzy regions, the symbol
is reduced to a point. According to the definitions of the parameters, this point is the
center of the left bound of the bounding box. It is retrieved by the method getCentroid().
getCenter() returns the position of the vertical center. The other methods essentially
calculate parameters such as the height of the bounding box. setID(int) is used to modify
the symbol id, in order to compare the expression to a stored interpretation.

Class Context. Some methods, such as addChild(Context, int), allow the creation
of the tree by the association of nodes. The methods implement some constraints such as
the fact that a symbol must be one of the child of the node referenced as its parent. When
relationships are undone, clearForRelationship(int) ensures that these constraints are
maintained. Moreover, this object can access a symbol and its context. Therefore, it has
to implement the methods for calculating the parameters (H, D, V , and so on), and for
creating the input of the classifiers. To each symbol classifier corresponds a method like
buildClassifierInstance().

118 APPENDIX A. IMPLEMENTATION

Class Expression. During the creation, symbols can be added directly with their
bounding box (addSymbol(int[])). A Context object is created, with the corresponding
Symbol. process() implements the whole iterative recognition algorithm. compare(Expression)
allows to compare two expression trees, provided that they represent the same expression,
that is with the same number of symbols, which have the same Ids. It is used to compare
the results of the system to the test set. assignIds(Vector<Integer>) assigns the ids to
the symbols for the expression to be comparable to another expression with the same ids.

A.4 Handling XML Files

The class XMLCreator allows to create or to read several kinds of files, which represent
different purposes. It uses the JDOM framework. The ways it can be used are presented,
for some, in the ’Algorithms’ appendix, and for the rest, in the API and the code on the
provided disk. On Figure A.4, one can see several XML files, generated (and, for some,
read) by this class. They represent:

1. the interpretations of expressions

2. a list of files to open, corresponding for instance to a test set

3. a list of symbols’ id to load for testing the system

4. the automatically generated quiz for the website

A.5 The Graphical User Interface (GUI)

In this section, we present more details about how the GUI is implemented.

A.5.1 The Menus

There are two kinds of menus. For the recurrent actions we display a set of buttons. A
comprehensive list of all possible actions is found in the top menu.

Top Menu. The top menu is implemented by the TopMenu class. There are seven menus
for different kind of actions:

• ’File’ allows to open an input image, draw one, enter a Latex expression or close the
program.

• ’Display’ allows to show/hide all parenting links, all baselines, all fuzzy regions, the
expression (to leave the bounding boxes only). From this menu, we can also re-open
the results view or the file manager if they have been closed.

• ’Save’ contains all actions involving exporting (the image, the image panel, the in-
terpretation(s) or symbols list in XML)

• ’Load’ allows to load different kinds of XML files (e.g. to compare an interpretation
with the real one)

• ’Go to...’ allows to navigate from an image panel to another

• ’Set class...’ and ’Set relationship...’ allow to label an expression.

A.5. THE GRAPHICAL USER INTERFACE (GUI) 119

Figure A.4: Some XML Files handled by the Proposed System

Additional Buttons. The actions behind the main buttons are self-explanatory. ’Select
Parent’ allows in fact to create and label a relationship. The child is the currently selected
symbol in the image panel. When this button is clicked, the GUI wait for the user to click
on the parent symbol and display an instance of SelectRelationship for the labelling,
as shown on Figure 5.7, page 85.

120 APPENDIX A. IMPLEMENTATION

A.5.2 The Panels of the Main Window

The Image Panel

The implementation of this panel has been explained in Chapter 5. The ImagePanel
object contains some global variables, which are parameters for the display. For example,
to realize what is the actual input of the system, one can choose to display only the
bounding boxes. Different kinds of displays are presented on Figure A.5.

Figure A.5: Image Panel

The Classification Panel

The classification panel, instance of ClassificationPanel is used to display the clas-
sification of the selected symbol. It uses histograms, which are instances of the class
Histogram. In the bottom-left corner is the mixed distribution of confidence values for
the relationship classifier. On the top line, there are zero to five histograms, for the results
of the child based classifiers. On the second line, left to right, are found the results of
the ratio-based classifier, of the parent-based classifier and the mix of the children based
classifier. On the last line is the mixed result. On figure 5.5, page 84, we notice that the
selected symbol has only one child (subscript) and we can see how the system handles the
lack of context in the resulting distributions. The Histogram object is created from an
array of double and a size. It automatically calculates the position and size of the bars.

A.5.3 Implementation of the ’Plot’ Window

When an expression is processed by the system, and then compared with the expected
interpretation, a Statistics object is created. It contains the parameters for the eval-
uation of the system. It can be seen as a multi-dimensional data point (6-dimensional).
When a whole test set is evaluated, we get a vector of Statistics. A PlotWindow object

A.6. IMPLEMENTATION OF TWO ALGORITHMS 121

is instantiated with such a vector. It provides a two-dimensional projection of the results,
making their analysis more convenient. It is made of a top menu, where the features for
each axis can be chosen, and of a PlotPanel object, where the graph is drawn, with an
automatic scaling. An instance of this window is displayed on Figure A.6.

Figure A.6: Plot Window

A.5.4 The File Manager

When a folder is clicked, the workspace moves into it. When a file is clicked, the actions
available, given the extension, are shown. For instance,

• ’bmp’ files are images which can be opened

• ’tex’ files can be parsed to import mathematical expressions

• ’model’ files can be read a classifiers, serialized by Weka

• ’xml’ can contain list of symbols to load, or expressions interpretations to be imported
as expressions or used to test the performance of the system.

The files and folders are represented as FileButton objects. The FileManager class is a
singleton.

A.6 Implementation of Two Algorithms

In this section, we will present how the objects interact with each other to perform what
they are meant to do. We show only some algorithms, namely the data set creation and
the classification. More algorithm descriptions can be found in the next appendix, and in
the API.

A.6.1 Data Set Creation

As explained before, the data set creation is done by a DatasetBuilder object. The
methods in this object first generate Latex expressions. Then, the class LatexParser
transforms this expression into an image, which is converted in an ImageProc object. The

122 APPENDIX A. IMPLEMENTATION

image is segmented and the Expression is created from the list of bounding boxes, and
made available to the DatasetBuilder. Then, the method autoProcessDataset(int[], int[])
is called. It allows to use the information about the generation of the expression to auto-
matically label it. The method getDatasetLine() of each symbol finally allows to create
the CSV file used to populate the database. This can be summarized by the diagram on
Figure A.7.

Figure A.7: Sequence Diagram of the Data Set Creation

A.6.2 The Classification

The classification is the core of the problem. It is made of several steps, corresponding
to different implementations. The initialization is a rough symbol classification. This is an
usual symbol classification, but with no context. Then, at each iteration, all relationships
are undone, the structure is recognized, and the symbol classes are refined. This process
corresponds to the method process() of Expression.

A.6.2.1 Symbol Classification

Each symbol in the expression is classified. The inputs of the classifiers are build by
the methods in the class Context, and send to the object Classifiers, which return the
confidence values, as explained on Figure A.8.

A.6.2.2 Structure Recognition

To avoid confusion, the previous structure is undone before a new structure recognition.
To do so, the parent link of each symbol is cut, as are the children links. The Relationship
object associated with a symbol is reinitialized. The data structures used in the structure
recognition have been presented in Chapter 5. The design of the algorithm has been shown

A.6. IMPLEMENTATION OF TWO ALGORITHMS 123

Figure A.8: Sequence Diagram for the Symbol Classification

in Chapter 4. Its implementation is explained by the code in Appendix B. More details
can be found in the API on the disk.

124 APPENDIX A. IMPLEMENTATION

Appendix B

Algorithms

In this appendix, we will present the code for several algorithms. They are the main
algorithms used to train the classifiers, import inputs, recognize the expressions, test the
system and export the results. The whole code and its API is available in the provided
disk.

B.1 Creation of the Data Sets

The creation of the data sets is mainly done by the class DatasetBuilder. The algo-
rithm presented in Chapter 4 is implemented by methods such as buildELI() (presented
below, first listing). The automatic generation of instances is performed by methods sim-
ilar to buildELILines(int[], int[]), presented in the second listing. The automatic
labelling of these expressions is done within the Expression class, via methods such as
autoProcessELIDataset(int[], int[]) (third listing).

Listing B.1: Generation of Expressions
1 public void buildELI ()
2 {
3 // Operators
4 St r ing [] op = {”” , ”ˆ{” , ” {” , ”}{” } ;
5 S t r ing eq = ”” ; // l a t e x expre s s ion
6 for (int a=0; a<6; a++)
7 for (int aop=0; aop<3; aop++)
8 for (int b=0; b<6; b++)
9 for (int bop=0; bop<4; bop++)

10 for (int c=0; c <6; c++)
11 i f (aop>0 | | bop<3)
12 {
13 // fo r a l l t r i p l e t s , tw ice
14 eq = ”” ;
15 // choose randomly a symbol in the corresponding c l a s s
16 eq += symbols [a / 2] [(int) Math . f l o o r (symbols [a / 2] . l ength ∗Math . random ()

)] ;
17 eq += op [aop] ;
18 eq += symbols [b / 2] [(int) Math . f l o o r (symbols [b / 2] . l ength ∗Math . random ()

)] ;
19 eq += op [bop] ;
20 eq += symbols [c / 2] [(int) Math . f l o o r (symbols [c / 2] . l ength ∗Math . random ()

)] ;
21 i f (aop>0) eq += ”}” ;
22 i f (bop>0 && bop<3) eq += ”}” ;
23 // Record c l a s s e s o f symbols and r e l a t i o n s h i p s
24 int [] symClasses = {a /2 , b/2 , c /2} ;
25 int [] r e l C l a s s e s = {aop , bop } ;
26
27 ImageProc ip = getImage (eq) ; // Create image

125

126 APPENDIX B. ALGORITHMS

28 Express ion expr = new Express ion (ip . segment ()) ; // Create
expres s ion

29 expr . addGaussian () ; // add Gaussian va r i a t i on s
30 bui ldELILines (expr , symClasses , r e l C l a s s e s) ; // bu i l d examples f o r NN
31 buildYNCELILines (expr , symClasses , r e l C l a s s e s) ; // bu i l d example f o r

po s s i b l e−c h i l e c l a s s i f i e r
32 t o t a l++;
33 }
34 }

Listing B.2: Automatic Generation of the Instances
1 private void bui ldELILines (Express ion expr , int [] symClasses , int [] r e l C l a s s e s)
2 {
3 i f (expr . autoProcessELIDataset (symClasses , r e l C l a s s e s))
4 // Automatic l a b e l l i n g . . . r e turns i f the segmentat ion was OK (i . e . 3 symbols)
5 for (Context c : expr . getSymbols ()) data [l i n e++] = c . getDatasetLine () ; //

crea t e in s tance s in the da ta s e t
6 else
7 data [l i n e ++][1] = 1 ; // record segmentat ion error
8 }

Listing B.3: Automatic Labelling of Expressions
1 public boolean autoProcessELIDataset (int [] symClasses , int [] r e l C l a s s e s) {
2 i f (this . symbols . s i z e () !=3) // segmentat ion error !
3 return fa l se ;
4 else
5 {
6 // Automatic parent ing
7 this . autoParent ing () ;
8
9 Context c1 = symbols . get (0) ,

10 c2 = symbols . get (1) ,
11 c3 = symbols . get (2) ;
12 // Symbol Lab e l l i n g
13 c1 . s e tC l a s s (symClasses [0]) ;
14 c2 . s e tC l a s s (symClasses [1]) ;
15 c3 . s e tC l a s s (symClasses [2]) ;
16 // Re la t i onsh ip l a b e l l i n g
17 c2 . s e tRe l a t i on sh i p (r e lC l a s s e s [0]) ;
18 c1 . addChild (c2 , r e lC l a s s e s [0]) ;
19 i f (r e l C l a s s e s [1]==3) { c1 . addChild (c3 , Re l a t i on sh ip . INLINE) ; c3 .

s e tRe l a t i on sh i p (Re la t i on sh ip . INLINE) ; }
20 else { c2 . addChild (c3 , r e lC l a s s e s [1]) ; c3 . s e tRe l a t i on sh i p (r e lC l a s s e s

[1]) ; }
21
22 return true ;
23 }
24 }

B.2 Train the Classifiers

The classifiers are trained using the Weak API, in methods of the class Classifiers. Here
is one example for the parent-based classifier.

Listing B.4: Training the Parent-Based Classifier
1
2 St r ing s q l ;
3 In s tance s data ;
4 Evaluat ion eva l ;
5 S t r ing [] opt i ons ;
6
7 // −−−
8 // Connect to the database

B.3. SEGMENTATION 127

9 // −−−
10 InstanceQuery query = new InstanceQuery () ;
11 query . setDatabaseURL (dbase) ;
12 query . setUsername (””) ;
13 query . setPassword (””) ;
14
15 // −−−
16 // Set query
17 // −−−
18
19 s q l = ”SELECT ” ;
20 s q l += ”Data .H, Data .D, Data .V, ” ;
21 s q l += ”Data .PARENT CHAR AS PCLASS, ” ;
22 s q l += ”Data .CLASS ” ;
23 s q l += ”FROM Data ” ;
24 s q l += ”WHERE (((Data .SEGERR)=0) AND (Data .PARENT CHAR<> ’0 ’)) ; ” ;
25
26 query . setQuery (s q l) ;
27 data = query . r e t r i e v e I n s t a n c e s () ;
28
29 // −−−
30 // Se t t i n g op t ions
31 // −−−
32 opt ions = Ut i l s . s p l i tOpt i on s (”−L 0 .3 −M 0.2 −N 500 −V 0 −S 0 −E 20 −H a”) ;
33 SCB. setOpt ions (opt ions) ;
34 data . s e tC la s s Index (data . numAttributes ()−1) ;
35
36 // −−−
37 // Train the c l a s s i f i e r
38 // −−−
39 System . out . p r i n t l n (” Bui ld ing SCB . . . ”) ;
40 SCB. b u i l d C l a s s i f i e r (data) ;
41 System . out . p r i n t l n (”Done . ”) ;
42
43 // −−−
44 // C l a s s i f i e r e va lua t i on
45 // −−−
46 System . out . p r i n t l n (”Cross−va l i d a t i o n f o r SCB . . . ”) ;
47 eva l = new Evaluat ion (data) ;
48 eva l . c rossVal idateMode l (SCB, data , 10 , new Random(1)) ;
49 System . out . p r i n t l n (”Done . ”) ;
50 System . out . p r i n t l n (eva l . toSummaryString (”\n Resu l t s f o r SCB: \n\n” , fa l se)) ;

B.3 Segmentation

The segmentation consists in returning a list of bounding boxes from an input image. It
is implemented by the method segment() of the class ImageProc.

Listing B.5: Image Segmentation
1 public Vector<Context> segment ()
2 {
3 // S i ze o f the arrays
4 int max labe l s = 100 ;
5
6 // I n i t i a l i z a t i o n s
7 int [] [] l a b e l s = new int [this . width ()] [this . he ight ()] ; // p i x e l l a b e l s
8 int [] equiv = new int [max labe l s] ; // equ i va l ence t a b l e
9 boolean [] used = new boolean [max labe l s] ; // used l a b e l s

10 int [] [] bbs = new int [max labe l s] [4] ; // Bounding boxes
11
12 Vector<Context> r e s u l t = new Vector<Context >() ; // Resu l t o f the segm .
13
14 // I n i t i a l i z a t i o n o f the equ i va l ence t a b l e
15 for (int i =0; i<max labe l s ; i++)
16 {
17 equiv [i] = i ; // a l l l a b e l s are e qu i v a l en t to themse lves

128 APPENDIX B. ALGORITHMS

18 used [i] = fa l se ; // none are used
19 }
20
21 int c u r r e n t l a b e l = 0 ;
22 int [] ne igh ;
23 int nb ne i ;
24 int min labe l ;
25
26 // F i r s t Pass
27 for (int y=1; y<this . he ight () −1; y++)
28 for (int x=1; x<this . width () −1; x++)
29 {
30 // not whi te p i x e l s
31 i f (this . getGrey (x , y) <250)
32 {
33 neigh = new int [4] ;
34 nb ne i = 0 ;
35
36 // Co l l e c t ne ighbours
37 i f (l a b e l s [x−1] [y]>0) neigh [nb ne i++] = l a b e l s [x−1] [y] ;
38 i f (l a b e l s [x−1] [y−1]>0) neigh [nb ne i++] = l a b e l s [x−1] [y−1] ;
39 i f (l a b e l s [x] [y−1]>0) neigh [nb ne i++] = l a b e l s [x] [y−1] ;
40 i f (l a b e l s [x+1] [y−1]>0) neigh [nb ne i++] = l a b e l s [x+1] [y−1] ;
41
42 i f (nb ne i==0)
43 // new l a b e l i f no neighbour
44 l a b e l s [x] [y] = ++cu r r e n t l a b e l ;
45 else
46 {
47 min labe l = max labe l s ;
48 // ge t the minimum l a b e l
49 for (int i =0; i<nb ne i ; i++)
50 i f (ne igh [i]< min labe l) min labe l = equiv [ne igh [i]] ;
51 // s e t p i x e l l a b e l
52 l a b e l s [x] [y] = equiv [min labe l] ;
53 // update equ i va l ence t a b l e
54 for (int i =0; i<nb ne i ; i++)
55 i f (equiv [ne igh [i]] > min labe l) equiv [ne igh [i]]= equiv [min labe l] ;
56 }
57 }
58 }
59
60 // update equ i va l ence t a b l e to ge t the min e qu i v a l en t
61 for (int i =0; i<max labe l s ; i++)
62 while (equiv [i] > equiv [equiv [i]]) equiv [i] = equiv [equiv [i]] ;
63
64 // Second pass
65 int actLabe l ;
66 for (int x=1; x<this . width () ; x++)
67 for (int y=1; y<this . he ight () −1; y++)
68 {
69 i f (l a b e l s [x] [y]>0)
70 {
71 // I f the p i x e l i s l a b e l l e d
72 actLabe l = equiv [l a b e l s [x] [y]] ;
73 i f (! used [actLabe l])
74 {
75 // i n i t i a l i z e bounding box
76 bbs [actLabe l] [0] = x ;
77 bbs [actLabe l] [1] = x ;
78 bbs [actLabe l] [2] = y ;
79 bbs [actLabe l] [3] = y ;
80 used [actLabe l] = true ;
81 }
82 else
83 {
84 // update bounding box
85 i f (bbs [actLabe l] [0] > x) bbs [actLabe l] [0] = x ;
86 i f (bbs [actLabe l] [1] < x) bbs [actLabe l] [1] = x ;
87 i f (bbs [actLabe l] [2] > y) bbs [actLabe l] [2] = y ;

B.4. PARSE LATEX FILE 129

88 i f (bbs [actLabe l] [3] < y) bbs [actLabe l] [3] = y ;
89 }
90 }
91 }
92
93 // Create Context o b j e c t s corresponding to the bounding boxes
94 for (int i =0; i<max labe l s ; i++)
95 i f (used [i])
96 {
97 r e s u l t . add (new Context (bbs [i])) ;
98 }
99

100 return r e s u l t ;
101 }

B.4 Parse Latex File

The LatexParser object allows to open a Tex file and look for equations in it. It is
a convenient way of storing a set of expressions. The parsing result is a list of Latex
equations. Afterwards, the method getLatexImage(String) can create the binary image
corresponding to these equations.

Listing B.6: Latex File Parsing
1 public LatexParser (S t r ing path) throws FileNotFoundException
2 {
3 // Opens the f i l e
4 BufferedReader in = new BufferedReader (new Fi leReader (path)) ;
5 // I n i t i a l i z e the vec tor o f e xp re s s i ons
6 exp r e s s i on s = new Vector<Str ing >() ;
7 S t r ing l i n e ;
8
9 try

10 {
11 // Read the f i r s t l i n e
12 l i n e = in . readLine () ;
13 Pattern pattern = Pattern . compi le (”&begin \\{ equat ion \\} (.∗)&end\\{ equat ion \\}”)

;
14 Matcher matcher ;
15 // browse the document
16 while (l i n e !=null)
17 {
18 // rewr i t e the l i n e
19 l i n e = l i n e . r ep l a c e (”\\ begin ” , ”&begin ”) . r ep l a c e (”\\end” , ”&end”) ;
20 matcher = pattern . matcher (l i n e) ;
21 i f (matcher . matches ())
22 {
23 // add the Latex equat ion
24 exp r e s s i on s . add (matcher . group (1)) ;
25 }
26 l i n e = in . readLine () ; // next l i n e
27 }
28 } catch (IOException e) { e . pr intStackTrace () ; }
29 }

B.5 Symbol Classification

When classifySymbols() in Expression is called, the method classifySymbol() of
each Context is called. It uses the method classifySymbol(Context) of the Classifiers
object, presented below. It results in a SymbolClass object which mixes the classifiers
outputs and represents the classification, which can be associated with the symbol.

130 APPENDIX B. ALGORITHMS

Listing B.7: Symbol Classification
1 public SymbolClass c l a s s i f ySymbo l (Context c) throws Exception
2 {
3 // Get con tex t in format ion
4 boolean hasParent = c . hasParent () , hasSub = c . hasSub () , hasSup = c . hasSup () ,

hasHor = c . hasHor () , hasUpp = c . hasUpp () , hasUnd = c . hasUnd () ;
5 // Define arrays
6 double [] distA , distB , distC1 , distC2 , distC3 , distC4 , distC5 ;
7
8 distA = getSymbolClassA (c) ; // Ratio−based c l a s s i f i c a t i o n
9 // Divide by pr io r on symbol c l a s s

10 for (int i =0; i<Parameters .NB OF SYMBOL CLASSES; i++) distA [i] /= SymbolClass .
PROPCL[i] ;

11 U t i l s . normal ize (distA) ; // Normalize array
12 // Parent−based c l a s s i f i c a t i o n
13 distB = (hasParent) ? getSymbolClassB (c) : ArrayTools . evenDist (Parameters .

NB OF SYMBOL CLASSES) ;
14 // Children−based c l a s s i f i c a t i o n s
15 distC1 = (hasHor) ? getSymbolClassC (c , Re l a t i on sh ip . INLINE) : ArrayTools .

evenDist (Parameters .NB OF SYMBOL CLASSES) ;
16 distC2 = (hasSup) ? getSymbolClassC (c , Re l a t i on sh ip .SUPERSCRIPT) : ArrayTools .

evenDist (Parameters .NB OF SYMBOL CLASSES) ;
17 distC3 = (hasSub) ? getSymbolClassC (c , Re l a t i on sh ip .SUBSCRIPT) : ArrayTools .

evenDist (Parameters .NB OF SYMBOL CLASSES) ;
18 distC4 = (hasUpp) ? getSymbolClassC (c , Re l a t i on sh ip .UPPER) : ArrayTools .

evenDist (Parameters .NB OF SYMBOL CLASSES) ;
19 distC5 = (hasUnd) ? getSymbolClassC (c , Re l a t i on sh ip .UNDER) : ArrayTools .

evenDist (Parameters .NB OF SYMBOL CLASSES) ;
20 // Create symbol c l a s s (SymbolClass w i l l mix the conf idence va lue s)
21 return new SymbolClass (distC1 , distC2 , distC3 , distC4 , distC5 , distA , distB) ;
22 }

B.6 Structure Recognition

The structure recognition is performed by the method parentAndRelate() af a RelationshipFinder
object, as presented below.

Listing B.8: Structure Recognition
1 public void parentAndRelate ()
2 {
3 // I n i t i a l i z e the s tack o f seen symbols
4 Stack<Base l ineSt ruc ture > lastBL = new Stack<Base l ineSt ruc ture >() ;
5 // Retr i eve the l i s t o f symbols
6 Vector<Context> vc = expr . getSymbols () ;
7 // Get the f i r s t symbol . . .
8 Context cons ide r ed = expr . f indLeftMost () ;
9 // . . . which has no parent : we add i t to the s tack o f seen symbols

10 Base l i n eS t ruc tu r e dominantBLS = new Base l i n eS t ruc tu r e (cons ide r ed) ;
11 lastBL . add (dominantBLS) ;
12
13 // The working s tack
14 Stack<Base l ineSt ruc ture > l a s tBL c lone ;
15 // The candidate b a s e l i n e
16 Base l i n eS t ruc tu r e consideredBL ;
17 // The l i s t o f candidate b a s e l i n e s
18 Vector<Base l ineSt ruc ture > candidatesBL ;
19 // The candidate f o r parent ing , and the b e s t parent found so fa r
20 Context po s s i b l ePar en t ; Ba s e l i n eS t ruc tu r e bestParent ;
21 // Has a parent been found
22 boolean parented ;
23 // The v a r i a b l e s f o r the conf idence o f a r e l a t i o n s h i p
24 double con f idence , max conf idence ;
25 // The cons idered r e l a t i on s h i p , and the b e s t found so fa r
26 int r e l a t i o n , be s tRe la t i on ;
27 // The conf idence va lue s f o r r e l a t i o n s h i p (RC)
28 double [] r c ;

B.6. STRUCTURE RECOGNITION 131

29 // The conf idence va lue s f o r r e l a t i o n s h i p (f u z z y reg ions)
30 double [] fuzzy ;
31 // The ba s e l i n e conf idence
32 double [] b a s e l i n e ;
33 // The YNC conf idence
34 double [] p o s s i b l eCh i l d ;
35 // The array conta in ing the r e l a t i o n s h i p sor t ed by conf idence
36 int [] s o r t edRe l s ;
37
38 // We browse the symbols in the l i s t
39 for (int i =1; i<vc . s i z e () ; i++)
40 {
41 // Retr i eve the next symbol
42 cons ide r ed = vc . get (i) ;
43 // Not ye t parented
44 parented = fa l se ;
45 // Defau l t b e s t parent
46 bestParent = dominantBLS ;
47 // Defau l t b e s t r e l a t i o n
48 be s tRe la t i on = Re la t i on sh ip . INLINE ;
49
50 max conf idence = 0 . ;
51
52 // −−−−−−−−−−−−−−−−
53 // BEGIN INLINE TEST
54
55 // S ta r t wi th the dominant b a s e l i n e
56 candidatesBL = new Vector<Base l ineSt ruc ture >() ;
57 candidatesBL . add (dominantBLS) ;
58
59 while (! parented && candidatesBL . s i z e () >0)
60 {
61 // Check a l l b a s e l i n e s , beg inning with the dominant
62 consideredBL = candidatesBL . remove (0) ;
63 po s s i b l ePar en t = consideredBL . getDominantSymbol () ;
64 r e l a t i o n = Re la t i on sh ip . INLINE ; // i n l i n e t e s t
65 con f idence = 0 . ;
66
67 // Retr i eve the conf idence va lue s
68 try {
69 rc = cons ide r ed . g e tV i r tua lRe l a t i on sh i p (po s s ib l ePar en t) ;
70 fuzzy = pos s ib l ePar en t . getFuzzyRegions () . memberships (cons ide r ed) ;
71 ba s e l i n e = cons ide r ed . ba s e l i n eS co r e (po s s ib l ePar en t) ;
72 po s s i b l eCh i l d = cons ide r ed . po s s ib l eCh i ldOf (po s s i b l ePar en t) ;
73 } catch (Exception e) {
74 rc = new double [Parameters .NB OF RELATIONSHIP CLASSES] ;
75 fuzzy = new double [Parameters .NB OF RELATIONSHIP CLASSES] ;
76 ba s e l i n e = new double [Parameters .NB OF SYMBOL CLASSES] ;
77 po s s i b l eCh i l d = new double [2] ;
78 MainWindow . i n s t . addResultText (”Error in the c l a s s i f i c a t i o n ”) ;
79 }
80 // Mix the conf idence to have the g loba conf idence
81 con f idence = rc [Re l a t i on sh ip . INLINE]∗ Parameters .COEFF RCI ;
82 con f idence += ba s e l i n e [cons ide r ed . getSymbolClass () −1]∗Parameters .COEFF BL;
83 con f idence += po s s i b l eCh i l d [0] ∗ Parameters .COEFF YNI ;
84 con f idence /= (Parameters .COEFF BL+Parameters .COEFF RCI+Parameters .COEFF YNI)

;
85
86 // I f the conf idence i s h igh enough , we can do the parent ing f o r t h i s

r e l a t i o n s h i p
87 i f (con f id ence > THRESHOLD)
88 {
89 parented = true ;
90 cons ide r ed . s e tRe l a t i on sh i p (new Re la t i on sh ip (pos s ib l eParent , cons idered ,

r e l a t i o n)) ;
91 consideredBL . updateStructure (cons ide r ed) ; // the b a s e l i n e s t r u c t u r e i s

updated
92 lastBL . push (consideredBL) ; // symbol added to the s tack
93 }
94 // I f not , i t can be the b e s t parent amongst a l l symbols

132 APPENDIX B. ALGORITHMS

95 else
96 {
97 i f (con f id ence > max conf idence)
98 {
99 max conf idence = con f idence ;

100 bestParent = consideredBL ;
101 be s tRe la t i on = r e l a t i o n ;
102 }
103 // Retr i eve nes ted b a s e l i n e s f o r the next s t ep in i n l i n e t e s t
104 Vector<Base l ineSt ruc ture > nested = consideredBL . ge tNes t edBase l ine s () ;
105 i f (nested !=null) candidatesBL . addAll (nested) ;
106 }
107 }
108 // END OF THE INLINE TEST
109 // −−−−−−−−−−−−−−−−−−−−−−
110 i f (! parented)
111 {
112 // −−−−−−−−−−−−−−−−
113 // BEGIN CHILD TEST
114 la s tBL c lone = (Stack<Base l ineSt ruc ture >) lastBL . c l one () ;
115 do
116 {
117 consideredBL = las tBL c lone . pop () ; // Get the l a s t symbol (1/2)
118 pos s i b l ePar en t = consideredBL . getDominantSymbol () ; // (2/2)
119 // Retr i eve the conf idence va lue s
120 try {
121 rc = cons ide r ed . g e tV i r tua lRe l a t i on sh i p (po s s ib l ePar en t) ;
122 fuzzy = pos s ib l ePar en t . getFuzzyRegions () . memberships (cons ide r ed) ;
123 ba s e l i n e = cons ide r ed . ba s e l i n eS co r e (po s s ib l ePar en t) ;
124 po s s i b l eCh i l d = cons ide r ed . po s s ib l eCh i ldOf (po s s i b l ePar en t) ;
125 } catch (Exception e) {
126 rc = new double [Parameters .NB OF RELATIONSHIP CLASSES] ;
127 fuzzy = new double [Parameters .NB OF RELATIONSHIP CLASSES] ;
128 ba s e l i n e = new double [Parameters .NB OF SYMBOL CLASSES] ;
129 po s s i b l eCh i l d = new double [2] ;
130 MainWindow . i n s t . addResultText (”Error in the c l a s s i f i c a t i o n − 2”) ;
131 }
132 // −− Loop on r e l a t i o n s h i p s
133 // Sort the RC r e l a t i o n s h i p s
134 so r t edRe l s = ArrayTools . indexSort (rc) ;
135 int r=0;
136 // Keep l ook ing f o r a p o s s i b l e r e l a t i o n s h i p wh i l e i t i s not parented ,
137 // in order o f the most l i k e l y r e l a t i o n s h i p s
138 while (! parented && r<Parameters .NB OF RELATIONSHIP CLASSES)
139 {
140 r e l a t i o n = sor t edRe l s [r] ; // Get the cons idered r e l a t i o n s h i p
141 con f idence = Parameters .COEFF RCC∗ rc [r e l a t i o n] ; // Get the conf idence

f o r i t
142 i f (! po s s i b l ePar en t . hasChi ld (r e l a t i o n) && r e l a t i o n != Re la t i onsh ip . INLINE)
143 {
144 // Mix the conf idence i f t h i s r e l a t i o n s h i p i s a v a i l a b l e
145 con f idence += Parameters .COEFF FR∗ fuzzy [r e l a t i o n] ;
146 con f idence += Parameters .COEFF YNC∗ po s s i b l eCh i l d [1] ;
147 con f idence /= (Parameters .COEFF BL+Parameters .COEFF RCC+Parameters .

COEFF YNC) ;
148 // I f the conf idence i s h igh enough , we can do the parent ing f o r t h i s

r e l a t i o n s h i p
149 i f (con f idence > THRESHOLD)
150 {
151 parented = true ;
152 cons ide r ed . s e tRe l a t i on sh i p (new Re la t i on sh ip (pos s ib l eParent ,

cons idered , r e l a t i o n)) ;
153 Bas e l i n eS t ruc tu r e newNode = new Base l i n eS t ruc tu r e (cons ide r ed) ;
154 consideredBL . addChild (newNode) ;
155 lastBL . push (newNode) ;
156 }
157 // I f not , i t can be the b e s t parent amongst a l l symbols
158 else
159 {
160 i f (con f id ence > max conf idence)

B.7. ITERATIVE ALGORITHM 133

161 {
162 max conf idence = con f idence ;
163 bestParent = consideredBL ;
164 be s tRe la t i on = r e l a t i o n ;
165 }
166 }
167 } // end i f no parent
168 r++;
169 } // end loop on r e l a t i o n s h i p s
170 } while (! parented && ! consideredBL . equa l s (dominantBLS)) ;
171 // END OF CHILD TEST
172 // −−−−−−−−−−−−−−−−−
173 }
174 i f (! parented)
175 {
176 // Parent with the b e s t parent , i f p o s s i b l e (i e i f no c h i l d in t ha t r e l .)
177 po s s i b l ePar en t = bestParent . getDominantSymbol () ;
178 Bas e l i n eS t ruc tu r e newNode = new Base l i n eS t ruc tu r e (cons ide r ed) ;
179 i f (! po s s i b l ePar en t . hasChi ld (be s tRe la t i on))
180 {
181 cons ide r ed . s e tRe l a t i on sh i p (new Re la t i on sh ip (pos s ib l eParent , cons idered ,

be s tRe la t i on)) ;
182 i f (be s tRe la t i on==Re la t i on sh ip . INLINE)
183 bestParent . updateStructure (cons ide r ed) ;
184 else
185 bestParent . addChild (newNode) ;
186 }
187 lastBL . push (newNode) ;
188 }
189 } // next symbol
190 }

B.7 Iterative Algorithm

To recognize an expression, the method process() of the Expression is called. It returns
a list of Interpretation objects, corresponding to the expression’s interpretations at each
step.

Listing B.9: An Iterative Algorithm
1 public Vector<I n t e rp r e t a t i on > proce s s ()
2 {
3 i n t e r p r e t a t i o n s = new Vector<I n t e rp r e t a t i on >() ;
4 Re la t i onsh ipF inder r f = new Rela t i onsh ipF inder (this) ;
5 this . c l a s s i f ySymbo l s () ; // Rough symbols c l a s s i f i c a t i o n
6 for (int i t e r =0; i t e r <Parameters . ITERATIONS; i t e r++)
7 {
8 this . c l e a rRe l a t i o n s h i p s () ; // undo r e l a t i o n s h i p s
9 r f . parentAndRelate () ; // s t r u c t u r e r ecogn i t i on

10 this . addCurrent Inte rpre ta t i on () ; // save i n t e r p r e t a t i o n
11 this . c l a s s i f ySymbo l s () ; // symbols c l a s s i f i c a t i o n
12 this . addCurrent Inte rpre ta t i on () ; // save i n t e r p r e t a t i o n
13 }
14 return i n t e r p r e t a t i o n s ;
15 }

B.8 Export XML Interpretation

XMLCreator provides several methods to create and read XML files. To create the XML
interpretation of an expression, the method createXML(Expression, String) is called.
It creates the root node (<expression width=.. height=..>) which contains one child,
the dominant symbol node. The JDOM framework is used to create and save the XML
file, and the symbol nodes are created by createSymbolNode(Context).

134 APPENDIX B. ALGORITHMS

Listing B.10: Export XML Interpretation
1 public stat ic Element createSymbolNode (Context c)
2 {
3 Element e ;
4 double [] d ;
5
6 // Create the node
7 Element e l = new Element (”symbol”) ;
8 // Set the a t t r i b u t e s
9 e l . s e tAt t r i bu t e (new Attr ibute (” id ” , ””+c . getSymbolId ())) ;

10 e l . s e tAt t r i bu t e (new Attr ibute (” c l a s s ” , c . getSymbolClass ()+””)) ;
11 e l . s e tAt t r i bu t e (new Attr ibute (” r e l ” , c . g e tRe l a t i on sh ip ()+””)) ;
12
13 // Chi ld : bounding box
14 e = new Element (”boundingBox”) ;
15 e . addContent (new Element (”xmin”) . addContent (c . getSymbol () . xmin+””)) ;
16 e . addContent (new Element (”xmax”) . addContent (c . getSymbol () . xmax+””)) ;
17 e . addContent (new Element (”ymin”) . addContent (c . getSymbol () . ymin+””)) ;
18 e . addContent (new Element (”ymax”) . addContent (c . getSymbol () . ymax+””)) ;
19
20 e l . addContent (e) ;
21
22 // Chi ld : conf idence on the symbol c l a s s
23 e = new Element (” symbolClass ”) ;
24 d = c . getSymbolClassObject () . c on f i d enc e s () ;
25 for (int i =0; i<Parameters .NB OF SYMBOL CLASSES; i++)
26 e . addContent (new Element (” c l a s s ”) . s e tAt t r i bu t e (” id ” , (i +1)+””) . addContent (d [i

]+””)) ;
27
28 e l . addContent (e) ;
29
30 // Chi ld : conf idence on the r e l a t i o n s h i p
31 e = new Element (” r e l a t i o n s h i pC l a s s ”) ;
32 d = c . ge tRe la t i onsh ipObjec t () . c on f i d enc e s () ;
33 for (int i =0; i<Parameters .NB OF RELATIONSHIP CLASSES ; i++)
34 e . addContent (new Element (” c l a s s ”) . s e tAt t r i bu t e (” id ” , i+””) . addContent (d [i]+””)

) ;
35
36 e l . addContent (e) ;
37
38 // Add ch i l d r en symbols
39 i f (c . hasSup ()) e l . addContent (createSymbolNode (c . getSup ())) ;
40 i f (c . hasSub ()) e l . addContent (createSymbolNode (c . getSub ())) ;
41 i f (c . hasUpp ()) e l . addContent (createSymbolNode (c . getUpp ())) ;
42 i f (c . hasUnd ()) e l . addContent (createSymbolNode (c . getUnd ())) ;
43 i f (c . hasHor ()) e l . addContent (createSymbolNode (c . getHor ())) ;
44
45 return e l ;
46 }

B.9 Compare Expressions

An expression can be compared to a reference (for example, extracted from an XML
file), via the method compare(Expression) of the class Expression. It returns a list of
statistics concerning the comparison, in the form of a Statistics object.

Listing B.11: Compare Two Expressions
1 public S t a t i s t i c s compare (Express ion e)
2 {
3 // F i r s t requirement : same number o f symbols
4 boolean eq = this . getSymbols () . s i z e () == e . getSymbols () . s i z e () ;
5 i f (! eq) MainWindow . i n s t . addResultText (”The exp r e s s i on s do not have the same

amount o f symbols !\n (t h i s : ”+this . nbSymbols ()+” , e : ”+e . nbSymbols ()+”)\n”) ;
6 // I n i t i a l i z e the i t e r a t o r s
7 I t e r a t o r <Context> i t e rTh i s = this . getSymbols () . i t e r a t o r () ;

B.9. COMPARE EXPRESSIONS 135

8 I t e r a t o r <Context> i t e rOthe r = e . getSymbols () . i t e r a t o r () ;
9 // I n i t i a l i z e S t a t i s t i c s parameters

10 int n = this . getSymbols () . s i z e () ;
11 double [] cor rectnessSymbol = new double [n] ;
12 double [] c o r r e c t n e s sRe l a t i o n sh i p = new double [n] ;
13 int symErr=0, parErr=0, r e lE r r =0;
14 int [] symErrClass = new int [Parameters .NB OF SYMBOL CLASSES] ;
15 int [] s t rucErr = new int [5] ;
16 int [] errByCtxt = new int [Parameters .NB OF RELATIONSHIP CLASSES+2] ;
17 int [] [] symConf = new int [Parameters .NB OF SYMBOL CLASSES] [Parameters .

NB OF SYMBOL CLASSES] ;
18 // I t e r a t i o n on symbols i f p o s s i b l e
19 int i = 0 ;
20 boolean parentingErrorFound ;
21 while (eq && i t e rTh i s . hasNext ())
22 {
23 Context c1 = i t e rTh i s . next () ; // next in t h i s
24 Context c2 = i t e rOthe r . next () ; // next in re f e r ence
25 // I n i t i a l i z e parent ing error
26 parentingErrorFound = fa l se ;
27 // Update confus ion matrix
28 symConf [c2 . getSymbolClass () −1][c1 . getSymbolClass ()−1]++;
29
30 i f (c1 . getSymbolClass () !=c2 . getSymbolClass ()) // symbol m i s c l a s s i f i c a t i o n ?
31 {
32 symErr++; // update s t a t s
33 symErrClass [c2 . getSymbolClass ()−1]++;
34 errByCtxt [c2 . amountOfContext ()]++;
35 }
36 i f (c1 . g e tRe l a t i on sh ip () !=c2 . g e tRe l a t i on sh ip ()) // r e l a t i o n s h i p error ?
37 {
38 r e lE r r++; // update s t a t s
39 i f (c2 . hasParent ()) // Check i f i t corresponds to an m i s c l a s s i f i c a t i o n o f

parent . . .
40 i f (this . getContextById (c2 . getParent () . getSymbolId ()) . getSymbolClass () !=c2 .

getParent () . getSymbolClass ()) s t rucErr [3]++;
41 i f (c1 . getSymbolClass () !=c2 . getSymbolClass ()) s t rucErr [4]++; // . . . and/or

o f c h i l d
42 }
43 // Check i f t he re i s a parent ing error
44 i f (c1 . hasParent ())
45 {
46 i f (! c2 . hasParent ()) // parent in express ion , none in re f e r ence
47 {
48 parErr++;
49 parentingErrorFound=true ;
50 s t rucErr [0]++;
51 }
52 else i f (c1 . getParent () . getSymbolId () !=c2 . getParent () . getSymbolId ())
53 { // not the same parent
54 parErr++;
55 parentingErrorFound=true ;
56 i f (this . getContextById (c2 . getParent () . getSymbolId ()) . getSymbolClass () !=c2 .

getParent () . getSymbolClass ()) s t rucErr [0]++;
57 }
58 }
59 else i f (c2 . hasParent ())
60 { // parent in re ference , none in t h i s expres s ion
61 parErr++;
62 parentingErrorFound=true ;
63 i f (this . getContextById (c2 . getParent () . getSymbolId ()) . getSymbolClass () !=c2 .

getParent () . getSymbolClass ()) s t rucErr [0]++;
64 }
65 // Compute co r r e tne s s (conf idence o f the ac tua l c l a s s)
66 correctnessSymbol [i] = c1 . getSCConfidence (c2 . getSymbolClass ()) ;
67 i f (parentingErrorFound)
68 { // i f error parent ing , the r e l . co r r ec tne s s correspond to the conf . o f a c tua l

r e l . and parent
69 c o r r e c t n e s sRe l a t i o n sh i p [i] = c1 . ge tVi r tua lRe lCon f idence (c2 . getParent () , c2 .

g e tRe l a t i on sh ip ()) ;

136 APPENDIX B. ALGORITHMS

70 i f (c1 . g e tRe l a t i on sh ip () !=c2 . g e tRe l a t i on sh ip ()) s t rucErr [2]++; // parent ing
err . due to r e l . error

71 i f (c1 . getSymbolClass () !=c2 . getSymbolClass ()) s t rucErr [1]++; // . . . or symb
. m i s c l a s s i f i c a t i o n

72 }
73 else // r e l a t i o n s h i p co r r ec tne s s
74 c o r r e c t n e s sRe l a t i o n sh i p [i] = c1 . getRelConf idence (c2 . g e tRe l a t i on sh ip ()) ;
75 // next
76 i++;
77 }
78 // crea t e S t a t i s t i c s o b j e c t
79 S t a t i s t i c s s t a t = new S t a t i s t i c s () ;
80 s t a t . setNbSymbols (n) ;
81 s t a t . s e tEr ro rParent ing (parErr) ; s t a t . setErrorSymbol (symErr) ; s t a t .

s e tE r r o rRe l a t i on sh ip (r e lE r r) ;
82 s t a t . setErrorSymbolByClass (symErrClass) ; s t a t . setErrorSymbolByContext (errByCtxt) ;
83 s t a t . setConfusionMatSym (symConf) ; s t a t . s e tS t ru c tu r eEr ro r (s t rucErr) ;
84 s t a t . s e tCo r r e c tn e s sRe l a t i on sh i p (c o r r e c t n e s sRe l a t i o n sh i p) ; s t a t .

setCorrectnessSymbol (correctnessSymbol) ;
85 s t a t . s e tExpres s ionLatex (this . getLatex ()) ; s t a t . setFoundLatex (this . buildMetaLatex

()) ; s t a t . setExpectedLatex (e . buildMetaLatex ()) ;
86
87 return s t a t ;
88 }

Appendix C

Test Sets and Results

The aim of this appendix is to provide a comprehensive presentation of the results. We
will present the test sets, and show the results yielded by the system, as well as some
statistics.

C.1 The Test Sets

All test sets have been built using the developed GUI. They have been designed and
labelled by hand. We loaded a set of LATEXexpressions from a TeX file that we wrote.
Using the tools in the GUI, we labelled the expressions, and exported the interpretations,
which correspond to this labelling. Then, we could reload the expressions, and apply the
recognition to them. Finally, we could compare them with the saved interpretations.

We have different test sets, for different complexities of expressions and different content.
We included in the test sets some symbols which were not in the training sets, in order to
evaluate the flexibility of the system.

We also have a test set of expressions generated by other equations editor than LATEX,
and a test set of handwritten expressions. The aim is to see how flexible our system is.
Indeed, it has been built using only expressions generated by the jLATEXMath framework.

C.2 Notations and Figures

We can see how the system works, and understand some mistakes by looking at the
recognition output. However, showing the uncertainty and confidence values for each
symbol is difficult. In the next section, we will show only the most likely interpretation,
along with some information such as the average confidence on the actual symbols’ class
(symbol correctness).

To show a visual output, we generate a meta-Latex expression. Indeed, since we do not
perform a symbol recognition but a symbol classification, we cannot show the symbols’
identity. Thus, in the results, ’a’ represents a symbol of class ’small’, ’p’ for ’descend-
ing’, ’b’ for ’ascending’ and ’

∑
’ for ’variable range’. To avoid confusion, we also present

the expected meta-Latex expression, which is merely the translation of the actual Latex
expression into its meta-Latex form.

137

138 APPENDIX C. TEST SETS AND RESULTS

A summary of the recognition is also presented in the last column. N is the number
of symbols, er the ratio of relationships errors, ep the ratio of parenting errors, es the
ratio of symbol misclassifications, Cs the average symbol correctness and Cr the average
relationship correctness. These last two numbers represent how good the system is. It
uses the uncertainty that is left in the interpretation. Global results have been presented
in the chapter ’Results and Evaluation’.

C.3 Results

The following tables present the results of each test set. They show the actual expres-
sion, the expected Latex output and the actual one, and the recognition statistics. Some
recognition results cannot be interpreted by Latex, when there is a subscript and an under
symbol for example. The plain Latex command in then presented instead.

The expressions marked with (*) have been used for human labelling.

C.3. RESULTS 139

Table C.1: Results for testset0-1 (left) and testset0-2 (right)

A
c
tu

a
l

E
x
-

p
re

ss
io

n
E
x
p
e
c
te

d
R

e
su

lt
R

e
c
o
g
n
it

io
n

R
e
su

lt
S
ta

ti
st

ic
s

⋂
⋃

Y
∑

∑
b

p
p

a

N
=

3
e s

=
1
0
0
%

,
e p

=
0
%

,
e r

=
3
3
%

C
s

=
0
.2

5
,

C
r

=
0
.5

∏
2
5
n
B

∑
bb

a
b

∑
bb

a
a

N
=

5
e s

=
2
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

3
,

C
r

=
0
.7

5

5
∑

g
h

b
∑

p
b

ba
p

p

N
=

4
e s

=
5
0
%

,
e p

=
0
%

,
e r

=
5
0
%

C
s

=
0
.2

6
,

C
r

=
0
.5

5

a
∑

n
∏

w
p

a
∑

a
∑

a
p

a
b a

∑
a
p

N
=

6
e s

=
1
6
%

,
e p

=
1
6
%

,
e r

=
1
6
%

C
s

=
0
.3

5
,

C
r

=
0
.5

7

P
a
d
V

ba
bb

ba
p
a

N
=

4
e s

=
5
0
%

,
e p

=
2
5
%

,
e r

=
2
5
%

C
s

=
0
.3

5
,

C
r

=
0
.4

5

P
V

n
R

T
bb

a
bb

bb
a
a
a

N
=

5
e s

=
4
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

6
,

C
r

=
0
.7

2

α
Γ
π
∆

a
ba

b
b∑

a
a

N
=

4
e s

=
7
5
%

,
e p

=
2
5
%

,
e r

=
2
5
%

C
s

=
0
.3

3
,

C
r

=
0
.5

∧
α
p

∑
a
p

p
a

p

N
=

3
e s

=
3
3
%

,
e p

=
0
%

,
e r

=
3
3
%

C
s

=
0
.3

5
,

C
r

=
0
.6

4

σ
⋃

A
u

a
∑

ba
a
p

a
a

N
=

4
e s

=
5
0
%

,
e p

=
0
%

,
e r

=
2
5
%

C
s

=
0
.3

4
,

C
r

=
0
.2

∗ϕ
∨

∧
T

p
p

∑
∑

bp
∑

p
p

a
p

N
=

5
e s

=
8
0
%

,
e p

=
0
%

,
e r

=
2
0
%

C
s

=
0
.2

7
,

C
r

=
0
.5

4

A
c
tu

a
l

E
x
-

p
re

ss
io

n
E
x
p
e
c
te

d
R

e
su

lt
R

e
c
o
g
n
it

io
n

R
e
su

lt
S
ta

ti
st

ic
s

n
oc

on
te

x
t

a
a
a
a
a
ba

a
b

a
a
a
a
a
ba

a
b

N
=

9
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

1
,

C
r

=
0
.6

4

d
c

ba
p
a

N
=

2
e s

=
5
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

,
C

r
=

0
.7

3

v
lm

a
ba

a
ba

N
=

3
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

4
,

C
r

=
0
.2

E
P

x
bb

a
bb

a

N
=

3
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

9
,

C
r

=
0
.5

1
2
3

bb
b

bb
b

N
=

3
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

7
,

C
r

=
1
.0

1
a
2
b3

p
ba

bb
bp

ba
bb

bp

N
=

6
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

6
,

C
r

=
0
.6

7

ta
n
π

ba
a
a

ba
a
a

N
=

4
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

4
,

C
r

=
0
.6

1

∑
a

∑
a

b a

N
=

2
e s

=
5
0
%

,
e p

=
0
%

,
e r

=
5
0
%

C
s

=
0
.2

9
,

C
r

=
0
.0

∑
p
a
cb

∑
p
a
a
b

a
b
a

∑
b

N
=

5
e s

=
6
0
%

,
e p

=
2
0
%

,
e r

=
4
0
%

C
s

=
0
.3

,
C

r
=

0
.4

4

∏
a

⋃
N

∑
a

∑
b

∑
a
p

a

N
=

4
e s

=
5
0
%

,
e p

=
0
%

,
e r

=
2
5
%

C
s

=
0
.3

4
,

C
r

=
0
.4

5

140 APPENDIX C. TEST SETS AND RESULTS

Table C.2: Results for testset1-1 (left) and testset1-2 (right)

A
c
tu

a
l

E
x
-

p
re

ss
io

n
E
x
p
e
c
te

d
R

e
su

lt
R

e
c
o
g
n
it

io
n

R
e
su

lt
S
ta

ti
st

ic
s

co
s2

θ
a
a
a

b
b

∑
a
a

b
b

N
=

5
e s

=
2
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

,
C

r
=

0
.9

6

lt o
so

v
co n

te
x

t
bb a

a
a

a
a

a a
ba

a
b

bb a
∑

a
a
a

a a
ba

a
b

N
=

1
3

e s
=

7
%

,
e p

=
1
5
%

,
e r

=
7
%

C
s

=
0
.4

6
,

C
r

=
0
.9

8

∗
g ∑ v

q ∏ 0

t u
rh

p ∑ a

p ∑ b

b a
a

b
p ∑ a

p ∑ b

b a
a

p

N
=

1
0

e s
=

1
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

,
C

r
=

0
.9

5

lo
g 2

x
r

ba
p

b
a

a
ba

p
b
a

a

N
=

6
e s

=
0
%

,
e p

=
1
6
%

,
e r

=
0
%

C
s

=
0
.4

3
,

C
r

=
0
.7

6

⋃ H

h
n m

T ⋂ t

x
b

∑ b

ba a

b ∑ b

a
b

p
_
{
b
^
{
a
}
_
{
a
}

\
s
u
m
^
{
a
}
a
_
{
b
}
}

_
{
a
b
}

N
=

1
0

e s
=

3
0
%

,
e p

=
1
0
%

,
e r

=
2
0
%

C
s

=
0
.3

9
,

C
r

=
0
.9

2

Z ∑ 0

x
4
2

∏ v

y
n

b

b ∑ b

a
bb

∑ a

p
a

b
b
_
{
a
b
b
}

^
{
a
}
_
{
b
}

\
s
u
m
_
{
a
}
p
_
{
a
}

N
=

1
1

e s
=

1
8
%

,
e p

=
9
%

,
e r

=
9
%

C
s

=
0
.3

8
,

C
r

=
0
.8

2

Γ
α π
∆

ba a
b

ba a
a

N
=

4
e s

=
2
5
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

7
,

C
r

=
0
.9

9

k ⊕ s

δ x

b ∑ a

b a

p ∑ a

b a

N
=

5
e s

=
2
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

6
,

C
r

=
0
.9

6

ψ
⊗ w

∏
k

p
p

∑ a

∑
bp

p
a

a
∑

p
p

N
=

6
e s

=
3
3
%

,
e p

=
1
6
%

,
e r

=
0
%

C
s

=
0
.3

2
,

C
r

=
0
.9

4

n
ot

U ∧ s

∨ q

p
q2

a
a
b

b ∑ a

∑ p

p
p

b

a
a
b

\
s
u
m
^
{
a
}
_
{
a
}

p
_
{
p
p
^
{
b
}
}
_
{
p
}N

=
1
1

e s
=

1
8
%

,
e p

=
0
%

,
e r

=
9
%

C
s

=
0
.3

7
,

C
r

=
0
.8

A
c
tu

a
l

E
x
-

p
re

ss
io

n
E
x
p
e
c
te

d
R

e
su

lt
R

e
c
o
g
n
it

io
n

R
e
su

lt
S
ta

ti
st

ic
s

a
b

a
b

a
b

N
=

2
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

5
,

C
r

=
0
.9

9

d
c

b a
p

a

N
=

2
e s

=
5
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

1
,

C
r

=
0
.9

9

b a
p

n
b a

p
a

b a
p

a

N
=

4
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

5
,

C
r

=
0
.9

9

tm p
ba p

ba p

N
=

3
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

3
,

C
r

=
0
.9

9

∗v
A u

p
a

a
b a
p

a
a

b a
p

a

N
=

5
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

3
,

C
r

=
0
.8

7

a
0
h

n u
a

b
ba a

a
b
ba a

N
=

5
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

3
,

C
r

=
0
.9

8

y
n l
z
q p

p
a b
a
p

p
p

a b
a
p

p

N
=

6
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

1
,

C
r

=
0
.9

be
p
e

ba
p
a

ba
p

a

N
=

4
e s

=
0
%

,
e p

=
0
%

,
e r

=
2
5
%

C
s

=
0
.3

9
,

C
r

=
0
.6

6

n ∑ 0

a

a ∑ b

a

a ∑ b

a

N
=

4
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

1
,

C
r

=
0
.9

4

q ∏ p

Y
n

p ∑ p

b a

p ∑ p

a
a

N
=

5
e s

=
2
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

9
,

C
r

=
0
.9

7

C.3. RESULTS 141

Table C.3: Results for testset2-1 (left) and testset2-2 (right)

A
c
tu

a
l

E
x
-

p
re

ss
io

n
E
x
p
e
c
te

d
R

e
su

lt
R

e
c
o
g
n
it

io
n

R
e
su

lt
S
ta

ti
st

ic
s

ln
X ∑ ln
2

es
n

p
b
a

b
∑ b

a
b

a
a

a
p

b
a

a
∑ b

a
b

a
a
a
p

N
=

1
1

e s
=

9
%

,
e p

=
9
%

,
e r

=
0
%

C
s

=
0
.4

1
,

C
r

=
0
.7

6

∑ g
h

m

p

∑ p
b
a

p
a
_
{
p
}
_
{
p
^
{
p
a
}
}N

=
5

e s
=

4
0
%

,
e p

=
0
%

,
e r

=
4
0
%

C
s

=
0
.3

,
C

r
=

0
.6

1

∗e
∏

ln
x

a
∑

b
a

a
a

∑
b
a

a

N
=

5
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

8
,

C
r

=
0
.8

1

a
N ∑ 2
x

y

lo
g n

α
F

a
b ∑ b

a
p

ba
p

a
a
b

a
a ∑ b

a
p

ba
p

a
a
a

N
=

1
2

e s
=

1
6
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

1
,

C
r

=
0
.7

9

∗B
n ⋂ a

⋃ p
P

Y
m

b
a ∑ a

∑ p
b

ba

\
s
u
m
^
{
a
a
}
_
{
a
}

p
_
{
a
^
{
a
}
}

_
{
p
^
{
a
}
}

N
=

9
e s

=
4
4
%

,
e p

=
0
%

,
e r

=
2
2
%

C
s

=
0
.3

6
,

C
r

=
0
.7

1

x
7
u

M
v

∏ q
F

E
a

v
g

a
b
a

b
a ∑ p
b

b a
a

p
a

b
a

a
a ∑ p
a

a
a
a
p

N
=

1
2

e s
=

2
5
%

,
e p

=
8
%

,
e r

=
8
%

C
s

=
0
.4

1
,

C
r

=
0
.7

5

K
∏

y
∏

x
b∑

p
∑

a
b∑

p
∑

a

N
=

5
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

6
,

C
r

=
0
.9

8

⋂
d

∑ ⋃
A

m
v
2

∑
b

∑ ∑
b

a
a

b

p
p ∑ p
a

a
a

b

N
=

8
e s

=
5
0
%

,
e p

=
0
%

,
e r

=
2
5
%

C
s

=
0
.3

4
,

C
r

=
0
.6

9

εΓ
π

α
p

a
b
a

a
p

a
b
a

a
p

N
=

5
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

,
C

r
=

0
.7

5

ϕ
∨ S

v

4
l ∧ 0

T
p

p
∑ b

a

b
b ∑ b

bp
∑

∑ a
a

b
b ∑ b

a
p

N
=

1
0

e s
=

3
0
%

,
e p

=
0
%

,
e r

=
2
0
%

C
s

=
0
.3

5
,

C
r

=
0
.8

1

A
c
tu

a
l

E
x
-

p
re

ss
io

n
E
x
p
e
c
te

d
R

e
su

lt
R

e
c
o
g
n
it

io
n

R
e
su

lt
S
ta

ti
st

ic
s

5
2
3

bb
b

bb
b

N
=

3
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

6
,

C
r

=
0
.9

9

ta
p
a

q
h
g

ba
p
a

p
bp

ba
p

a
p
bp

N
=

7
e s

=
0
%

,
e p

=
0
%

,
e r

=
1
4
%

C
s

=
0
.4

,
C

r
=

0
.6

6

g
p
d
w

lu
p

p
b
a

b
a

p
p

p
a

b
a

N
=

6
e s

=
1
6
%

,
e p

=
0
%

,
e r

=
1
6
%

C
s

=
0
.3

8
,

C
r

=
0
.6

4

e2
ln

2
a

b
b
a

b
a

b
b
a

b

N
=

5
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

5
,

C
r

=
0
.5

9

z
∑

Z
a

∑
b

a
a
b

N
=

3
e s

=
3
3
%

,
e p

=
3
3
%

,
e r

=
0
%

C
s

=
0
.3

,
C

r
=

0
.9

9

λ
n

2
d
3 B

k
ls

n
θ

ba
bb

b b
b
b
a
a
b

p
a
bb

b a
b
b
a
a
b

N
=

1
1

e s
=

1
8
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

8
,

C
r

=
0
.8

7

a
v
e
r
y

lo
n

g
M

E
a

a
a

a
p

b
a

a
p
bb

a
a

a
a

p
b
a

a
p
a
a

N
=

1
1

e s
=

1
8
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

9
,

C
r

=
0
.9

∗}
∂

tu
Φ

x
t

bb
b
a
b a

b
p
b b

a
a

a
b

N
=

7
e s

=
2
8
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

9
,

C
r

=
0
.5

2

lo
g
1
0

2
x
x

ba
p

b
b

b
a
a

ba
p
bb

a
b
a

N
=

8
e s

=
0
%

,
e p

=
3
7
%

,
e r

=
3
7
%

C
s

=
0
.4

3
,

C
r

=
0
.6

9

x
m

a
x

a
a

a
a

a
a

a
a

N
=

4
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

3
,

C
r

=
0
.9

5

142 APPENDIX C. TEST SETS AND RESULTS

Table C.4: Results for testset3-1 (left) and testset3-2 (right)

A
c
tu

a
l

E
x
-

p
re

ss
io

n
E
x
p
e
c
te

d
R

e
su

lt
R

e
c
o
g
n
it

io
n

R
e
su

lt
S
ta

ti
st

ic
s

d
a

b 2
3
v
b n

ba
b b
b
a
b a

ba
b b
b
a
b a

N
=

8
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

6
,

C
r

=
0
.8

5

e∏
n 0

2
n

x
a

∑
a b

b
a

a
a

b
a b
b
a

a

N
=

7
e s

=
1
4
%

,
e p

=
1
4
%

,
e r

=
0
%

C
s

=
0
.4

,
C

r
=

0
.8

2

D
e

e
P

T
h

o
u

g

h T
b a

a
b
bb

a
a

p

b
b

b a
a

a
a

p
a

b p
a
p

N
=

1
1

e s
=

5
4
%

,
e p

=
2
7
%

,
e r

=
2
7
%

C
s

=
0
.3

3
,

C
r

=
0
.7

6

α
Γ

π
a

b
a

a
b
a

N
=

3
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

,
C

r
=

0
.9

9

Σ
2 ∑ Σ
1

Π
x
2

b
b ∑ b
b

b a
b

a
b ∑ a
b

a
a
b

N
=

8
e s

=
3
7
%

,
e p

=
1
2
%

,
e r

=
1
2
%

C
s

=
0
.3

5
,

C
r

=
0
.9

7

ψ
b

⊗ ϕ
a

z x

p
b ∑ p
a

a
a

p
b ∑ a
a

a
a

N
=

7
e s

=
1
4
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

9
,

C
r

=
0
.9

8

m
g

h
a

p
b

a
p

p

N
=

3
e s

=
3
3
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

3
,

C
r

=
0
.9

5

b c
n
0

b a
a

b
b a

a
b

N
=

4
e s

=
0
%

,
e p

=
2
5
%

,
e r

=
2
5
%

C
s

=
0
.4

2
,

C
r

=
0
.9

9

m ⋃ a
Y

N ⋂ r
l

∆
a ∑ a
b

b ∑ a
b

b

a ∑ a
a

a ∑ a
b

a

N
=

9
e s

=
3
3
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

8
,

C
r

=
0
.9

5

ϕ
n

q
y ∨ p
x

X
Y

p
a

p
p ∑ p
a

bb
∑

a

p
p ∑ ∑
a

a
a

N
=

9
e s

=
4
4
%

,
e p

=
1
1
%

,
e r

=
2
2
%

C
s

=
0
.3

4
,

C
r

=
0
.9

2

A
c
tu

a
l

E
x
-

p
re

ss
io

n
E
x
p
e
c
te

d
R

e
su

lt
R

e
c
o
g
n
it

io
n

R
e
su

lt
S
ta

ti
st

ic
s

a
u

a

bu
t a

n
a

a
a

ba
b a

a
a

a
a

ba
b a

a

N
=

8
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

7
,

C
r

=
0
.7

1

v
s

A u
r p

n
a

a
b a
a

p
a

a
a

b a
a

p
a

N
=

7
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

3
,

C
r

=
0
.9

9

ra
p

t
o
r

a
a

p
b
a
a

∑
a

p
b
a
a

N
=

6
e s

=
1
6
%

,
e p

=
1
6
%

,
e r

=
1
6
%

C
s

=
0
.3

8
,

C
r

=
0
.8

4

∗
k

o ∑ a
b

K

b
a ∑ a
b

b

p
a ∑ a
b

a

N
=

6
e s

=
3
3
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

8
,

C
r

=
0
.9

8

F
x
2

b a
b

b a
b

N
=

3
e s

=
0
%

,
e p

=
3
3
%

,
e r

=
3
3
%

C
s

=
0
.3

8
,

C
r

=
0
.9

9

S
k

y
bb

p

p
p ∑

N
=

3
e s

=
6
6
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.2

4
,

C
r

=
0
.9

9

en
2

u
7

a
a

b

a
b

a
a

b

a
b

N
=

5
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

5
,

C
r

=
0
.9

9

n
e

s
t
e

d

a
a

a
b
a

b

a
a

a
b
a

p

N
=

6
e s

=
1
6
%

,
e p

=
1
6
%

,
e r

=
1
6
%

C
s

=
0
.3

8
,

C
r

=
0
.9

5

∗3
x

s
0

2
y

t n
ba

a
b
bp

b
a

ba
a

b
bp

b a

N
=

8
e s

=
0
%

,
e p

=
0
%

,
e r

=
1
2
%

C
s

=
0
.4

5
,

C
r

=
0
.7

3

∏
v u

l
∑ ∑

b a
g

A
r

∑
a a

b
∑ ∑

b a
p

b a

b
a a

b
∑ b

b a
p

a
a

N
=

1
1

e s
=

2
7
%

,
e p

=
1
8
%

,
e r

=
0
%

C
s

=
0
.3

4
,

C
r

=
0
.9

9

C.3. RESULTS 143

Table C.5: Results for testsetNL (left) and testsetHW (right)

A
c
tu

a
l

E
x
-

p
re

ss
io

n
E
x
p
e
c
te

d
R

e
su

lt
R

e
c
o
g
n
it

io
n

R
e
su

lt
S
ta

ti
st

ic
s

a
a
a
a
ba

a
∑

∑
bb

a

N
=

6
e s

=
5
0
%

,
e p

=
0
%

,
e r

=
1
6
%

C
s

=
0
.3

1
,

C
r

=
0
.8

2

b a
p

a
b a

p
a

N
=

4
e s

=
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.4

4
,

C
r

=
0
.8

3

b ∑ b

ba

p ∑ p

ba

N
=

5
e s

=
4
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

4
,

C
r

=
0
.9

a
a

b
a

b
a

a
b
p

b

N
=

5
e s

=
2
0
%

,
e p

=
2
0
%

,
e r

=
2
0
%

C
s

=
0
.4

,
C

r
=

0
.7

2

*

b ∑ b
p

a
b
a

p ∑ b
b

a
b
a

N
=

7
e s

=
2
8
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

9
,

C
r

=
0
.9

6

A
c
tu

a
l

E
x
-

p
re

ss
io

n
E
x
p
e
c
te

d
R

e
su

lt
R

e
c
o
g
n
it

io
n

R
e
su

lt
S
ta

ti
st

ic
s

bb
bb

a
bb

p
∑

a
a

∑
a
b
∑

pN
=

8
e s

=
6
2
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

1
,

C
r

=
0
.8

4

b ∑ a

a
b
a

p

a ∑ a

a
ba

a

N
=

7
e s

=
2
8
%

,
e p

=
0
%

,
e r

=
1
4
%

C
s

=
0
.3

7
,

C
r

=
0
.5

8

*

p
b ∑ b
a

a
p

a
b ∑ b
a

p
∑

N
=

7
e s

=
4
2
%

,
e p

=
0
%

,
e r

=
1
4
%

C
s

=
0
.3

7
,

C
r

=
0
.8

p
p

b
b a

a
a

p
p
p
a

a

N
=

6
e s

=
5
0
%

,
e p

=
3
3
%

,
e r

=
3
3
%

C
s

=
0
.3

1
,

C
r

=
0
.9

9

b∑
b
a

b
a

p
a

a
p

N
=

5
e s

=
8
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.2

6
,

C
r

=
0
.6

6

a
b
b

a
b
p

N
=

3
e s

=
3
3
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

3
,

C
r

=
0
.9

9

∑ b
a

b

b b
ba

b
b
a

b

N
=

6
e s

=
3
3
%

,
e p

=
0
%

,
e r

=
1
6
%

C
s

=
0
.3

4
,

C
r

=
0
.7

9

p ∑ b

a
a

p ∑ p

a
a

N
=

5
e s

=
2
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

9
,

C
r

=
0
.9

4

a
b
a

p
a

b
a

a
b
a

p
a

b
a

N
=

7
e s

=
0
%

,
e p

=
1
4
%

,
e r

=
1
4
%

C
s

=
0
.4

1
,

C
r

=
0
.8

8

a
a
a
ba

p
a
p
ba

N
=

5
e s

=
4
0
%

,
e p

=
0
%

,
e r

=
0
%

C
s

=
0
.3

5
,

C
r

=
0
.7

4

