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Who am I?

PhD defended at Université Paris-Sud last year
Deep Neural Networks 

for Large Vocabulary Handwritten Text Recognition

Now working as a Reasearch Engineer at a2ia in Paris

   … automatic document processing (handwriting recognition and more… )

   … part of the research team (6 people)
   … implementation of new neural networks
   … improving the speed and accuracy of production models
   … build the models of tomorrow

Théodore Bluche  <tb@a2ia.com> 
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What have we seen so far… 

→ Good deep neural networks as optical models of HWR
→ Good results with CTC and RNN (i.e. predicting chars directly, no HMM = no need to tune 
char length models)
→ Good results with sliding windows of pixels ( = limited need for feature extraction )

BUT …

- … careful preprocessing
- … sliding window = early 2D → 1D conversion
- … assumption that text lines are available / segmented 
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Spoiler! 

Before I started my thesis, Graves et al. came up with a system 

- made of deep nets
- trained with CTC (character sequence prediction)
- accepting pixel inputs
- without sliding window
- without preprocessing
- winning all international evaluations

(My colleagues at A2iA were all playing with … )

Multi-Dimensional Long Short-Term Memory Recurrent Neural Networks
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End-to-End Handwriting Recognition

This is attractive :
→ you can just throw your raw data in the training program and wait for the result

That makes the creation of models for new data / languages easier
… that’s why MDLSTM-RNNs are now in our products ( a2ia website )

… but there are still drawbacks, problems and challenges

(e.g. still need to find the text lines, not as easy to segment characters as HMMs, … )
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http://www.a2ia.com/sites/default/files/mediacenter/dir_2-20-2015_a2iatextreader_excerpt.pdf


Outline of this talk

➔ End-to-End HWR -- from pixels to text
◆ Multidimensional Recurrent Neural Networks

◆ A few results and tips

◆ Limitations

➔ Beyond textlines -- segmentation-free recognition of handwritten paragraphs
◆ Attention-based models

◆ A few results

◆ Limitations

➔ Future challenges … 
➔ Open discussion
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Neural Networks for Images (pixel level)

→ Instead of a feature vector, the input is only one pixel 
value (or a vector of 3 RGB values for color images)

→ The network is replicated at each position in the image
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Convolutional Neural Network

→ We can include spatial (structured) context :

instead of giving 1 pixel value at the current position, we give 
the values of all pixels in a given neighborhood

→ Replicated at all positions = convolution, 
with kernel defined by the weights

→ You can reduce the size of the feature maps by replicating 
the net every N positions (output will be N times smaller)

→ (nb. the sliding window of pixels = first layer was a   
      convolution)
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Multi-Dimensional Recurrent Neural Networks

the input at a given position includes the 
outputs of the same layer at neighbors

→ in MDLSTM cells, 2 forget gates, 2 
inner states merged 
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Multidimensional RNN

→ MD Recurrent  +  Convolutional layers

→ applied directly to the pixel of the raw text line 
image

→ A special Collapse layer on top to get sequential 
representation

→ Trained with CTC to output character sequences

Current State-of-the-art!
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What happens in the net? (bottom)
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MDLSTM (4 directions)

Convolutions

Sum + tanh

Simple features 
(like oriented edges, …)



What happens in the net? (middle)
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Complex features 
(like loops, ascenders, 

vertical strokes, …)

MDLSTM (4 directions)

Convolutions

Sum + tanh



What happens in the net? (top)
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More abstract features 
(combination of features, 

closer to character level…)

MDLSTM (4 directions)

Collapse

Softmax



Some results … 

Won all latest HWR competitions!

- OpenHaRT 2013 (Arabic)
- Maurdor 2013 (French, English, Arabic)
- ICDAR 2014, ICDAR 2015 (Old English)

Database Rimes IAM Bentham

Best feature system (Part I) 12.6 13.2 10.2

Best pixels system (Part I) 12.4 13.3 11.5

MDLSTM - RNNs 12.3 13.6 8.6

WER (%)
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Tips & Tricks

- Graves’ architecture work very well
- 2x2 tiling, 4x4 MDLSTM, 12 Conv. 2x4/2x4, 4x20 MDLSTM, 32 Conv. 2x4/2x4, 4x50 MDLSTM, Linear, Collapse

- Learning rate = 0.001

- !! weight initialization is important, GRADIENT CLIPPING in gates is crucial

- Every modification we tried except dropout made results worse!

- Reimplement RNNlib
- multithread the 4 directions of LSTM

- use block operations as much as possible

- !! the double for loop is costly, especially in the first layers

- For CTC with textlines (long sequences) → curriculum learning (Louradour et al. 2014)
- Start with an pre-trained RNN (e.g. train on IAM, finetune on your Db = works well even 

with less data or different languages)
- Regularize! (e.g. with dropout), because MDLSTMs overfit
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Machine learning on raw data = data(set)- and cost-dependent!

In the first MDLSTM layer, you don’t prevent this pixel … 

… to have an impact on the feature computed at this position

The learnt features won’t be local!

Limitations
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Limitations

The first LSTM takes more than half the computation time to only extract low-level 
features!

→ position-wise computation on high-resolution images
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Limitations

With CTC training, you cannot retrieve the character positions, and character predictions will 
be localized (peaks).
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cf. http://www.tbluche.com/ctc_and_blank.html 
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Limitations

The Collapse layer :

- prevents the recognition of multiple lines
- gives the same importance to all positions across the vertical axis
- propagates the same gradient at all positions
- hence prevents using the intermediate representation as features for images 

representing more than one line (that and the MDLSTM not local enough)
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Example - Post-LSTMs feature maps on paragraphs
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From line reco. with MDLSTM-RNN + Collapse and CTC … 

- line-per-line
- fixed reading order
- many predictions with fixed step size and map to character sequences
- sentitive to line segmentation

e.g. CER (%) on different line segmentations with MDLSTM-RNNs + CTC on IAM
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… to paragraph reco. char-by-char

General idea:

- process the whole image without line information
- make only one prediction per character
- at each timestep, predict the current character and where to look next

→ Attention-based Neural Networks
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An attention neural network

At each timestep t … 

- An attention network predicts a probability 

distribution over positions in the feature maps

- The attention probabilities are used to compute 

a weighted sum of the feature vectors

→ The Attention Neural Network predicts
  where to look next
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Attention Neural Network

The network is made of … 

- An encoder of the image into high level 
features

- An attention network iteratively 
computing weights for these features

- A decoder predicting characters from the 
sum

→ The attention net + decoder is applied N 
times
→ The whole net predicts characters + a special 
<EOS> token when it is done reading

26



Training

 The net predicts one character at a time

→ no need for CTC

Loss :

i.e. forces the network to predict the first char 
at t=1, then the second one, etc… 
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Attention Neural Network - Illustration



Results and Limitations

- Need a good curriculum 
( 1 line → 2 lines → Paragraphs)

- Attention net + decoder applied 
~500x / paragraph 
→ time/memory inefficient

- no language model (more difficult to 
integrate)
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Detailed results

Aggregated error rates are penalized by the attention sometimes reading the same line 
multiple times… ( > 100% error rate)
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Attention-Based Collapse
To be more efficient :

- The attention is now put on lines and 
not on characters

- = softmax on each column (not on the 
whole map)

- sum column/column
- back to CTC

→ A sort of weighted collapse!
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Training

→ Case 1 : we know the line breaks

We can apply the CTC restricted to each line for 
each timestep

→ Case 2 : we only have the paragraph 
annotation

We can apply the CTC to the complete reco with 
the whole paragraph trancript

nb. : in many availabe corpora (e.g. in DH), that is the case!
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Qualitative Results
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Quantitative Results
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Future Challenges

→ Full page recognition

- Reading order not easy to define
- Localized lines : should put attention on zones, between point (char. attention) and all 

width (line attention)
- Mixed languages, write-types in real-world documents

→ Faster models

- e.g. back to features to replace the first LSTM

→ Other challenges : efficient & robust DLA, challenging languages, … 
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Thanks for your 
attention

Théodore Bluche
tb@a2ia.com

(do not hesitate to reach me if you have questions)
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