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What is Handwriting Recognition?

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition

Introduction
What is Handwriting Recognition? 1 of 55

from Bentham database (Sánchez et al., 2014)



Why do Handwriting Recognition?

Applications:

Cheque
Processing

Forms Mail Archives etc...

The recognition result is used for:

• mailroom automation

• tax form processing

• genealogical research
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Is it difficult?

• Natural language = hard for computers

• The nature of the input signal adds to the challenge

Coping with different writing
styles

Dealing with digital images

Cursive nature⇒ hard to segment characters before recognition
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Preliminary Steps to Handwriting Recognition

Text line image preprocessing:

Input image Correct of the
inclination of

the text
(Buse et al., 1997)

Normalize the
contrast of the

image
(Roeder, 2009)

Normalize the
size of the

image
(Toselli et al., 2004)

Feature extraction with a sliding window:

(Kaltenmeier et al., 1993)
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Recognition
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Recognition

..

Hidden Markov Models (HMMs)

ck ≡

Transition model P(qt|qt−1)

Handles the sequential aspect of
the reading task

Emission model p(xt|qt)

Explains the observations

e.g. in (Bianne-Bernard, 2011; Kozielski et al., 2012, 2014)
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Recognition

..
Neural Networks
P(qt|xt)

• More classical models in pattern
recognition

• Predicts the state from the
observation

Hybrid NN/HMMs (Bourlard &
Morgan, 1994)

e.g. in (Dreuw et al., 2011; Espana-Boquera et al., 2011;

Doetsch et al., 2014), with 1-2 hidden layer NNs
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Recognition

..

Neural Networks
handling the

sequential aspect

The neural network:

• looks at the whole observation
sequence (length T)

• predicts the whole character
sequence (length m ≤ T)

Connectionist Temporal Classification (CTC; Graves et al.

(2006))

e.g. in (Strauß et al., 2014; Moysset et al., 2014; Pham

et al., 2014)
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Recognition

Lexicon
• Constrain the sequences of characters

to form words from a fixed vocabulary w→ o→ r→ d ≡ word

Language Model

• Constrain the sequences of words
e.g. to have a high probability P(W) = P(w1, · · · , wN)

• n-gram models, estimated from
frequencies of sequences of n words in
a corpus

Example: we are ... ?

P(not|are, we) = 7.0%
P(to|are, we) = 4.9%
P(in|are, we) = 3.0%

... also hybrid word/character language models (Kozielski et al., 2013b; Messina & Kermorvant, 2014)
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State-of-the-art Handwriting Recognition

• GMM-HMM with carefully chosen features and hybrid word/char LM
(Kozielski et al., 2013b, 2012, 2014)

• Tandem RNN/HMM approach: features for a GMM-HMM extracted with
an RNN (Kozielski et al., 2014, 2013a)

• Hybrid RNN/HMM: an RNN predicts HMM states (Doetsch et al., 2014)

• MDRNN+CTC approach: an RNN predicts character sequences from the
whole image (Strauß et al., 2014; Moysset et al., 2014; Pham et al., 2014;
Bluche et al., 2014)
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Overview

Introduction

Scope and Contributions

Experimental Setup
Databases
Neural Network Architectures
The Hybrid NN/HMM Scheme
Neural Network Training

Hybrid Deep Neural Networks / HMMs
Inputs
Architecture
Output/Training

Results

Conclusions and Perspectives
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Scope of this Thesis

Hybrid NN/HMM
system

Similar to...
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Focus of the Work

Experimental evaluation of different
aspects of

Deep Neural
Network Optical

Models
Evaluation

• error rate of the neural network
alone (at the frame or character level)

• error rate of the complete system
(Neural Network+HMM+LM) :
normalized edit distance between output

word/char. sequence and reference
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Question 1

Are RNNs better than deep MLPs?
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Question 2

Is deeper better?
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Question 3

What is the importance of (explicit) input context in
MLPs and RNNs?
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Question 4

Do we need handcrafted features?
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Question 5

How does the output topology influence the NN
performance?
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Question 6

What are the good training strategies for neural
networks for handwriting recognition?
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Contributions

• State-of-the-art GMM/HMM systems (not presented here)

• Comparison of different neural network inputs (type, size of context)

• State-of-the-art continuous handwriting recognition with deep, densely
connected neural networks (MLPs, RNNs) in hybrid NN/HMMs

• Study of training strategies of neural network optical models
(cross-entropy, CTC, sequence training, dropout)
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Experimental Setup

Introduction

Scope and Contributions

Experimental Setup
Databases
Neural Network Architectures
The Hybrid NN/HMM Scheme
Neural Network Training

Hybrid Deep Neural Networks / HMMs
Inputs
Architecture
Output/Training

Results

Conclusions and Perspectives

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition Experimental Setup 19 of 55



Databases —Rimes

Simulated mail
(imposed scenario)
constrained language
many dates, codes, ...
many writers

French
• 1,600 pages

• ≈ 80,000 words

• 97 different
characters
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(Augustin et al., 2006)



Databases —IAM

Copied passages of litterature
pretty clean handwriting
controlled content
many writers
rich language

English
• 1,200 pages

• ≈ 90,000 words

• 79 different characters
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Databases —Bentham

Historical documents (19th century):
notes of the philosopher Jeremy
Bentham
one author, a few writers
difficult handwriting
hyphenation, crossed-out text

English
• 433 pages

• ≈ 95,000 words

• 93 different characters
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Artificial Neural Networks

Multi-Layer Perceptron (MLP) Recurrent Neural Network (RNN)
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Artificial Neural Networks

Bidirectional RNN
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Neural Networks for Classification

• The outputs of the network are the different
classes (HMM states, characters), and
represent a score for each of them

• The inputs of the network are the frames
extracted with the sliding window (or rather
the resulting features)
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Neural Networks for Classification

• NN outputs can be considered as posterior
probabilities

• Hybrid NN/HMM Framework (Bourlard &
Morgan, 1994)

p(xt|qt) ∝
P(qt|xt)

P(qt)

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition

Experimental Setup
The Hybrid NN/HMM Scheme 24 of 55



Framewise Cross-Entropy Training

..1 Compute the forced alignments of the frame sequence with the HMM
of the correct word sequence

−→ labeled dataset of frames S = {(xt, qt)}

..2 Train the network to classify each frame individually

Cross-entropy cost function:

Exent = −
∑

(xt,qt)∈S

log P(qt|xt)

Evaluation
Frame Error Rate
(FER%)

# incorrectly classified frames
# of frames
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Connectionnist Temporal Classification Training (CTC)

..1 Use the dataset of frame sequence, with character sequence targets
S = {(x, c)}

..2 Train to predict the character sequence c directly
• NN outputs = characters + ⊘
• Mapping B : a a ⊘⊘b b ⊘ b a 7→ abba

CTC cost function:
Ectc = −

∑
(x,c)∈S

log P(c|x)

with P(c|x) =
∑

q∈B−1(c)

P(q|x) =
∑

q∈B−1(c)

∏
t

P(qt|x)

Evaluation

NN - Character Error
Rate (NN-CER%)

edit distance between reference and recognition
# of reference characters
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(Graves et al., 2006)



Hybrid Deep Neural Networks / HMMs

Introduction

Scope and Contributions
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Inputs

Handcrafted features
56 geometrical and statistical
features from (Bianne-Bernard, 2011)

Pixel Values
640 gray-level pixel intensities
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q3: (What) do we gain by explicitly including context?

in MLPs... (Neural Network alone (FER%))

the improvements are not so clear in the complete systems including LM,
but ...
−→ 2.4-22% relative WER improvement with best amount of context

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition

Hybrid Deep Neural Networks / HMMs
Inputs 29 of 55

(Handcrafted features)



q3: (What) do we gain by explicitly including context?

in MLPs... (Neural Network alone (FER%))

the improvements are not so clear in the complete systems including LM,
but ...
−→ 2.4-22% relative WER improvement with best amount of context

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition

Hybrid Deep Neural Networks / HMMs
Inputs 29 of 55

(Handcrafted features)



q3: (What) do we gain by explicitly including context?

in RNNs... (Neural Network alone (RNN-CER%))

−→ explicitly including context increases the error rate
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What context RNNs learn?

• Visulalization: gradient of the output w.r.t. the inputs (Graves et al., 2013)

• Top: input image, sliding window and prediction at time t
• Bottom: gradient of the prediction w.r.t the inputs

Rimes IAM

Bentham

−→ RNNs automatically use the context, which can even extend beyond
character boundaries
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q4: Are pixel values sufficient?

Complete systems (with LM; WER%)

MLPs RNNs

−→ Deep NNs reduce the performance gap between features and pixels
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Architecture

Depth

Recurrence

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition

Hybrid Deep Neural Networks / HMMs
Architecture 33 of 55



q2: Is deeper better?

Neural networks alone

MLPs RNNs
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q2: Is deeper better?

Complete systems (with LM; WER%)

MLPs RNNs

−→ Significant improvements (4-40%) with deep NNs (more for RNNs, and
more for pixels)
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What is the effect of depth vs. number of parameters?

MLPs RNNs

−→ results improve with both increasing depth and number of parameters
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What is the effect of depth vs. number of parameters?

MLPs RNNs

−→ at constant number of parameters, deeper is better
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q1: How deep MLPs compare to deep RNNs?

Complete systems (with LM; WER%)

Features Pixels

−→MLPs can achieve competitive performance to RNNs (Rimes, IAM)
but with limited amount of time, easier to train RNNs (Bentham)
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What is the impact of recurrence?

With ''RNN'' architecture: no input context, CTC training, alternating recurrent and feed-forward layers. Switching

recurrent (R) to feed-forward (F) layers.

Effect of recurrence on the character error rate of
the RNN alone (RNN-CER%)

Features Pixels
Rimes IAM Rimes IAM

FFF 44.0 39.6 38.0 32.8
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What is the impact of recurrence?

With ''RNN'' architecture: no input context, CTC training, alternating recurrent and feed-forward layers. Switching

recurrent (R) to feed-forward (F) layers.

Effect of recurrence on the character error rate of
the RNN alone (RNN-CER%)

Features Pixels
Rimes IAM Rimes IAM

FFF 44.0 39.6 38.0 32.8

RFF 13.2 13.7 62.2 61.3
FRF 12.3 13.7 20.6 19.2
FFR 13.0 12.5 17.5 17.5

RRF 11.6 23.1 20.8 20.3
RFR 11.6 11.8 23.0 19.6
FRR 11.6 12.0 15.3 17.5

RRR 9.7 11.4 16.7 18.9
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Training
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q6.1: What improvement do we observe with sequence
discriminative training of MLPs?

• Goal: optimize NN in the context of the whole system
(max. P(W|x), or min. error rate)

• Involves a sum over all possible word sequences→ in practice,
computed in recognition lattices

State-Level Minimum Bayes Risk (sMBR; Kingsbury (2009)), maximize:

EsMBR =
∑

(x,Wref)∈S

∑
W p(x|W)P(W)A(W,Wref)∑

W′ p(x|W′)P(W′)
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q6.1: What improvement do we observe with sequence
discriminative training of MLPs?

Complete systems (with LM; WER%)

Features Pixels

−→ 5-13% relative WER improvement: consistent with what we observe in
speech recognition
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Dropout

• Regularization technique for big NNs that tend to overfit

• During training, randomly drop neurons in a layer with probability p
• At test time, keep all neurons but multiply outgoing weights by (1− p)
• Applied to MDRNN in (Pham et al., 2014)
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q6.2: What is the impact of the position of dropout in
RNNs?

... compared to RNNs without any regularization

Position relative to the recurrent layers:

After
(Pham et al., 2014)

Postion inside the network: bottom, middle, or top recurrent layer.
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What is the impact of the position of dropout in RNNs?

−→ improvements over the method of (Pham et al., 2014)
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(CTC training - RNN alone (5 hidden layers of 200 nodes))



Where to apply dropout in RNNs?

Complete systems (with LM; WER%)
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q5-6: What is the impact of the outputs and training
stategies?

Training cost Outputs

Framewise
cross-entropy
(MLPs)

− log
∏

t
P(qt|xt) HMM states

(5-6 / character)

CTC
(RNNs)
(Graves et al., 2006)

− log
∑

q

∏
t

P(qt|x) Characters and
blank label ⊘

HMM training
(NN/HMM)
(Hennebert et al., 1997)

− log
∑

q

∏
t

P(qt|xt)

P(qt)
P(qt|qt−1)

HMM states
(5-6 / character)
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q5-6: What is the impact of the outputs and training
stategies?

Complete systems (with LM; WER%)

MLPs RNNs

−→ CTC works well with RNNs, not so much with MLPs
−→ Summation aspect does not improve the results, except for RNN+blank
−→ The blank symbol only helps with a few states
−→ CTC+blank, with one-state models, is especially suited to RNNs
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(MLP: 2x1024, ±5 frames - RNN: 1x100))
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Final Results —Rimes database

Final results on Rimes database

WER% CER%
GMM-HMM Features 15.8 6.0
MLP Features 12.7 3.7

Pixels 12.4 3.9
RNN Features 12.6 3.9

Pixels 13.8 4.6
Combination 11.2 3.5

Pham et al. (2014) 12.3 3.3
Doetsch et al. (2014) 12.9 4.3

Messina & Kermorvant (2014) 13.3 -
Kozielski et al. (2013a) 13.7 4.6

Messina & Kermorvant (2014) 14.6 -
Menasri et al. (2012) 15.2 7.2
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Final Results —IAM database

Final results on IAM database

WER% CER%
GMM-HMM Features 19.6 9.0
MLP Features 13.3 5.4

Pixels 13.8 5.6
RNN Features 13.2 5.0

Pixels 14.4 5.7
Combination 10.9 4.4

Doetsch et al. (2014) * 12.2 4.7
Kozielski et al. (2013a) * 13.3 5.1

Pham et al. (2014) 13.6 5.1
Messina & Kermorvant (2014) * 19.1 -

Espana-Boquera et al. (2011) 22.4 9.8
* : open-vocabulary
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Final Results —Bentham database

Final results on Bentham database

WER% CER%
MLP Features 18.6 7.5

Pixels 20.9 8.2
RNN Features 16.2 5.4

Pixels 16.9 5.9
Combination 14.1 5.0

CITlab 14.6 -
Ours (Competition) 15.1 -
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Conclusions

Deeper is better

Use pixels with deep neural networks

RNNs are not the only solution

... although with RNNs: no need to tune context size
or HMM topology, use CTC and no bootstrapping
system

... and don't forget ...
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Perspectives

Focus on other components of the systems:

• inputs: sliding window vs. whole images and ConvNNs/MDLSTM-RNNs

• Word language models and fixed vocabularies seem to be a limitation
−→ e.g. hybrid word/char LMs (Kozielski et al., 2013b; Messina & Kermorvant, 2014)

For industrial applications ...

• less training data, less clean

• no line segmentation

• no transcript

• smaller models
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Thank you for your attention!
tb@a2ia.com
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Coping with different writing styles

Goal: eliminate some of the variability of images

Examples:

Correct of the
inclination of the text

Normalize the
contrast of the image

Normalize the size of
the image

Other examples: correct the inclination of text lines (deskew), normalize the
thickness of the writing, ...
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How to deal with characters segmentation?

No segmentation
Whole-word (holistic)
recognition

Grapheme segmentation
Heuristic over-segmentation
into part of characters

Sliding Window
Sequences of image frames
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How to extract relevant information from images?

Low-level features — pixel counts and densities, black-white transitions,
moments, centre of gravity, profiles, ...

High-level features — derivatives, contours, filters, HoG, pixel configurations,
concavity features, ...

Shape features — loops, junctions, ascenders/descenders, ...
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Technical Description of the Base System

Preprocessing

Correct skew

Correct slant

Normalize contrast by
interpolation

Normalize height of different
regions

Feature Extraction

Optical Model

Language Model

Database Vocabulary OOV Rate (Dev.) n-gram Training Perplexity (Dev)
Rimes 5k 2.9% 4 Training set 18
IAM 50k 4.3% 3 LOB+Brown+Wellington 298
Bentham 33k 5.6% 3 Training set 108
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Technical Description of the Base System

Preprocessing

Correct skew (Bloomberg et al., 1995) → Correct slant (Buse et al., 1997) → Normalize contrast by
interpolation (Roeder, 2009) → Normalize height of different regions (Toselli et al., 2004)

Feature Extraction

Handcrafted features (Bianne-Bernard, 2011)
• Sliding window of 3px, with 3px step

• 56 handcrafted features extracted from each

frame
• 8 pixel density measures
• 12 pixel configurations
• HoG in 8 directions
• + deltas (= 28 + 28) (Bianne-Bernard, 2011)

Pixel values
• Sliding window of 45px, with 3px step

• Rescaled to 20 x 32px (keeps aspect-ratio)

• Extraction of the 640 gray-level pixel intensities
per frame

Optical Model

Language Model

Database Vocabulary OOV Rate (Dev.) n-gram Training Perplexity (Dev)
Rimes 5k 2.9% 4 Training set 18
IAM 50k 4.3% 3 LOB+Brown+Wellington 298
Bentham 33k 5.6% 3 Training set 108
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Correct skew (Bloomberg et al., 1995) → Correct slant (Buse et al., 1997) → Normalize contrast by
interpolation (Roeder, 2009) → Normalize height of different regions (Toselli et al., 2004)

Feature Extraction
Handcrafted Features
Sliding win.: width 3px / shift 3px
Features: 56 geometrical and statistical features from
Bianne-Bernard (2011)

Pixels
Sliding win.: width 45px / shift 3px (Bentham 57px/3px),
rescaled to height 20px
Features: 640 pixel values (Bentham: 800)

Optical Model

Transition: 6-state character
models (5 for Rimes) and 2-
state whitespace models

Emission: GMMs, MLPs

Transition: 1-state character
and blank models (CTC)

Emission: RNNs

Language Model

Database Vocabulary OOV Rate (Dev.) n-gram Training Perplexity (Dev)
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Technical Description of the Base System

Preprocessing

Correct skew (Bloomberg et al., 1995) → Correct slant (Buse et al., 1997) → Normalize contrast by
interpolation (Roeder, 2009) → Normalize height of different regions (Toselli et al., 2004)

Feature Extraction
Handcrafted Features
Sliding win.: width 3px / shift 3px
Features: 56 geometrical and statistical features from
Bianne-Bernard (2011)

Pixels
Sliding win.: width 45px / shift 3px (Bentham 57px/3px),
rescaled to height 20px
Features: 640 pixel values (Bentham: 800)

Optical Model

Emission Model
Gaussian Mixture Models (GMMs; Baseline)
Multi-Layer Perceptrons (MLPs)
Recurrent Neural Networks (RNNs)

Transition Model
Loop + transition to next state
6-state character models (5 for Rimes) and 2-state whitespace
models (GMMs, MLPs)
1-state character and blank models (RNNs)

Language Model

Database Vocabulary OOV Rate (Dev.) n-gram Training Perplexity (Dev)
Rimes 5k 2.9% 4 Training set 18
IAM 50k 4.3% 3 LOB+Brown+Wellington 298
Bentham 33k 5.6% 3 Training set 108
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Base system (optimization)

(GMM/HMM IAM, small training set, small LM)

Contrast enhancement
Window size: 6px 9px

Method None 54.2% 58.0%
Adaptive 57.2% 58.5%

Interpolation 53.1% 57.2%

Height normalization
Window size: 6px 9px

Method None 56.9% 59.6%
Fixed (72px) 54.2% 58.7%

Region (22px, 33px, 17px) 58.7% 63.8%
Region (24px, 24px, 24px) 53.1% 57.2%
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Base system (optimization)
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Base system (variations)

(GMM/HMM IAM)

Context-dependent models
Model WER CER

Context-independent 16.2 6.9
Context-dependent 16.3 6.6

LM at paragraph level
LM scope WER CER

Lines 16.2 6.9
Paragraphs 15.2 6.3
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State-of-the-Art GMM/HMM Performance for HWR

Results on Rimes databas

WER

Our GMM/HMM 15.8

GMM/HMM systems
Kozielski et al. (2014) 15.7

Grosicki & El-Abed (2011) 31.2

Other systems
Pham et al. (2014) 12.3

Doetsch et al. (2014) 12.9
Messina & Kermorvant (2014) 13.3

Results on Bentham database
(Dev.)

WER

Our GMM/HMM 27.9

GMM/HMM systems
Gatos et al. (2013) 32.6

Results on IAM database

WER

Our GMM/HMM 19.6

GMM/HMM systems
Kozielski et al. (2013b) 17.3
Kozielski et al. (2013b) 22.2

Toselli et al. (2010) 25.8
Bertolami & Bunke (2008) 32.8

Other systems
Doetsch et al. (2014) 12.2

Kozielski et al. (2013a) 13.3
Pham et al. (2014) 13.6
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DB statistiques

Number of pages, lines, words and characters in each dataset

Set #Pages #Lines #Words (unique) #Characters (unique)
Rimes Train 1,391 10,203 73,822 (8,061) 460,201 (97)
(French) Dev. 149 1,130 8,380 51,924

Eval. 100 778 5,639 35,286

Set #Pages #Lines #Words (unique) #Characters (unique)
IAM Train 747 6,482 55,081 (7,843) 287,727 (79)
(English) Dev. 116 976 8,895 43,050

Eval. 336 2,915 25,920 128,531

Set #Pages #Lines #Words (unique) #Characters (unique)
Bentham Train 350 9,198 76,707 (12,104) 419,764 (93)
(English) Dev. 50 1,415 11,580 64,070

Eval. 33 860 7,868 40,231
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context

Rimes IAM Bentham
none 14.5% 12.4% 26.0%
±1 14.1% 12.1% 23.4%
±3 13.9% 13.1% 21.2%
±5 14.5% 12.4% 20.1%
±7 15.8% 12.4% 20.8%

RNNs
Rimes IAM

none 14.1% 12.2%
±1 14.2% 12.1%
±3 13.7% 12.6%
±5 14.1% 12.6%
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What context RNNs learn?

..

..
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What context RNNs learn?

• Visulalization: gradient of the output wrt the input (Graves et al., 2013)

• Top: features; Bottom: pixels

Rimes IAM Bentham

−→ RNNs automatically use the context, which can even extend beyond
character boundaries
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Neural Network Architectures

MLPs

• Inputs: concatenation of ±δ frames around the
current one

• Hidden layers: linear+bias and sigmoid activation

• Outputs: one per HMM state (≈ 500) and softmax

Context Layers

Rimes Features ±3 fr. 3 × 512
Pixel - 5 × 512

IAM Feature ±3 fr. 5 × 256
Pixels - 5 × 1, 024

Bentham Feature ±5 fr. 7 × 512
Pixels - 6 × 512

RNNs

• Inputs: sequences of frames (no context)

• Hidden layers: alternate
• LSTM layers, one in each direction with the

same number of LSTM units
no peephole connection, cell input and
input/output/forget gates have the same
inputs
tanh activation

• feedforward tanh layer (after linear
transform of concat output of LSTMs in
both directions)

• Outputs: one per character + blank ⊘ (≈ 500) and
softmax

Context layers

Rimes Features - 7 × 200
Pixel - 5 × 200

IAM Feature - 5 × 200
Pixels - 7 × 200

Bentham Feature - 5 × 200
Pixels - 7 × 200
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NN training

MLPs

..1 forced alignments with GMM-HMM system

..2 layerwise pretraining of RBMs with CD1 (1st is
Gauss.-Bern, others are Bern.-Bern.)
LR = 0.001, L2 reg. λ = 0.0002

..3 Cross-entropy fine-tuning LR = 0.008 start
halving when impr < 0.2

..4 stop when impr. < 0.01

..5 sMBR LR = 0.00001

RNNs
CTC training

• no forced alignment, targets are the character
sequences

• CTC training (summation over all possible
segmentations) with LR = 0.01

• early stopping: keep best net if not improvement
of CTC cost for over 20 epochs

• no regularization
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Pre-training of MLPs
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MLP Weights
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RNNWeights

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition 75 of 55



Effect of Depth (WER%)

MLPs

WER% Shallow → Deep

Features
Rimes 14.0 → 13.5

IAM 12.4 → 11.8
Bentham 21.5 → 20.1

Pixels
Rimes 15.3 → 14.0

IAM 13.6 → 12.3
Bentham 28.8 → 22.4

RNNs

WER% Shallow → Deep

Features
Rimes 14.9 → 12.9

IAM 13.4 → 11.4
Bentham 20.6 → 18.0

Pixels
Rimes 24.1 → 14.0

IAM - → 12.8
Bentham 33.8 → 20.3
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Effect of Depth (not parameters) —IAM
MLPs RNNs
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Effect of Depth (not parameters) —Rimes
MLPs RNNs
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Effect of Depth (not parameters) —Bentham
MLPs RNNs
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Sequence Training of MLPs
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Sequence Training of MLPs
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sMBR Results

Features Pixels
WER% CER% WER% CER%

Rimes Cross-entropy 13.5 3.8 14.1 4.2
+ sMBR 12.5 3.4 12.6 3.8

(-7.4%) (-10.5%) (-10.6%) (-9.5%)

IAM Cross-entropy 11.7 4.2 12.3 4.2
+ sMBR 10.9 3.7 11.7 4.0

(-6.8%) (-11.9%) (-4.9%) (-4.5%)

Benth. Cross-entropy 20.1 8.5 22.4 10.6
+ sMBR 18.6 7.4 19.4 8.4

(-7.5%) (-12.9%) (-13.4%) (-20.8%)
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Dropout Results
Dropout Before Inside After All

Rimes None 8.2
(Features) Bottom 6.8 6.7 8.2 6.7

Middle 6.6 7.3 7.2 6.8
Top 7.4 8.6 8.0 8.8
All 5.0 5.4 6.8 7.1

None 9.7
(Pixels) Bottom 7.1 7.6 8.1 7.2

Middle 7.5 9.6 9.0 8.8
Top 8.0 9.2 7.8 9.1
All 5.8 6.0 6.5 7.4

Dropout Before Inside After All

IAM None 10.4
(Features) Bottom 9.1 8.5 9.8 8.8

Middle 8.9 9.1 8.6 8.7
Top 9.1 10.2 9.5 10.4
All 7.9 7.0 9.0 9.4

None 13.2
(Pixels) Bottom 10.0 9.1 11.4 10.1

Middle 10.1 11.1 10.6 10.8
Top 10.9 12.3 11.1 12.6
All 8.6 8.4 10.1 11.4

Dropout Before Inside After All

Bentham None 11.0
(Features) Bottom 8.5 9.9 12.3 8.8

Middle 9.8 9.9 10.4 10.0
Top 10.5 11.2 10.7 12.3
All 7.4 8.1 10.0 8.5

None 14.0
(Pixels) Bottom 10.4 9.9 13.4 9.7

Middle 11.0 13.6 12.2 13.0
Top 12.0 15.1 12.7 14.4
All 8.0 9.4 10.8 12.3
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Dropout Results

Handcrafted Features Pixels
RNN-CER WER CER RNN-CER WER CER

Rimes (%) (%) (%) (%) (%) (%)

5 no dropout 8.2 12.9 3.7 9.7 15.5 4.8
hidden after 6.8 12.8 3.6 6.5 13.3 4.1
layers inside 5.4 13.2 3.8 6.0 14.3 4.6

before 5.0 13.1 3.7 5.8 13.8 4.0
7 no dropout 8.0 14.1 4.1 8.9 14.7 5.0
hidden after 5.7 12.7 3.6 6.0 13.6 4.1
layers inside 5.3 12.7 3.7 5.9 14.2 4.6

before 4.8 12.7 3.7 5.3 13.7 4.2

IAM
5 no dropout 10.4 11.7 4.0 13.2 14.7 5.7
hidden after 9.0 11.8 4.1 10.1 13.2 4.7
layers inside 7.0 11.6 3.9 8.4 13.3 5.0

before 7.9 12.3 4.2 8.6 12.4 4.5
7 no dropout 10.1 12.9 4.6 11.6 14.6 5.5
hidden after 8.1 11.9 3.9 7.5 11.8 4.0
layers inside 7.1 11.9 4.1 7.9 13.0 4.7

before 7.4 11.7 4.1 8.3 13.2 4.8

Bentham
5 no dropout 11.0 18.1 7.0 14.0 21.3 9.0
hidden after 10.0 17.3 6.9 10.8 19.1 7.7
layers inside 8.1 17.7 6.8 9.4 20.0 8.5

before 7.4 16.6 6.2 8.0 17.8 6.9
7 no dropout 11.0 18.0 7.0 11.9 20.6 8.4
hidden after 8.9 17.2 6.7 8.9 18.7 7.3
layers inside 7.1 17.4 6.5 8.7 20.1 8.4

before 6.5 16.7 6.1 7.5 17.7 6.4
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Dropout Results
Handcrafted Features Pixels

RNN-CER WER CER RNN-CER WER CER
Rimes (%) (%) (%) (%) (%) (%)

5 after all 6.8 12.8 3.6 6.5 13.3 4.1
hidden before all 5.0 13.1 3.7 5.8 13.8 4.0
layers bef. 1 / aft. 2-3 5.5 12.8 3.6 6.3 13.5 4.0

bef. 1-2 / aft. 3 5.6 12.7 3.6 6.0 13.7 4.2
bef.+aft. all 5.4 12.7 3.7 5.3 12.7 3.9

7 after all 5.5 12.7 3.6 6.0 13.6 4.1
hidden before all 4.8 12.7 3.7 5.3 13.7 4.2
layers bef. 1-2 / aft. 3-4 5.3 12.7 3.7 6.2 13.6 4.1

bef. 1-2-3 / aft. 4 5.1 13.3 3.8 5.9 13.6 4.1
bef.+aft. all 5.6 13.7 4.2

IAM
5 after all 9.0 11.8 4.1 10.1 13.2 4.7
hidden before all 7.9 12.3 4.2 8.6 12.4 4.5
layers bef. 1 / aft. 2-3 8.2 11.6 4.0 8.0 11.9 4.1

bef. 1-2 / aft. 3 8.1 11.2 3.8 8.3 11.8 4.2
bef.+aft. all 7.8 12.2 4.1 7.9 11.6 4.1

7 after all 8.1 11.9 3.9 7.5 11.4 3.9
hidden before all 7.4 11.7 4.1 8.3 13.2 4.8
layers bef. 1-2 / aft. 3-4 8.0 11.5 3.9 7.9 11.6 4.0

bef. 1-2-3 / aft. 4 7.5 11.6 3.9 8.2 12.3 4.2
bef.+aft. all 8.1 13.3 4.5

Bentham
5 after all 10.0 17.3 6.9 10.8 19.1 7.7
hidden before all 7.4 16.6 6.2 8.0 17.8 6.9
layers bef. 1 / aft. 2-3 7.1 16.1 5.8 8.4 17.6 6.7

bef. 1-2 / aft. 3 7.4 16.0 6.0 8.7 18.1 6.7
bef.+aft. all 7.3 17.1 6.3 7.5 17.5 6.7

7 after all 8.9 17.2 6.7 8.9 18.7 7.3
hidden before all 6.5 16.7 6.1 7.5 17.7 6.4
layers bef. 1-2 / aft. 3-4 6.7 16.1 5.8 7.1 17.0 6.2

bef. 1-2-3 / aft. 4 6.7 16.3 5.7 7.3 17.6 6.4
bef.+aft. all 7.1 17.7 6.5
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Training strategies of Hybrid NN/HMM

Framewise
(cross-entropy)

HMM training
(NN/HMM)

(Hennebert et al., 1997)

CTC training
(Graves et al., 2006)

Output/Topology
Num. states/char. Several (HMM) Several (HMM) 1
Special NN output (⊘)

Training/Cost
Cost function − log

∏
t p(qt|xt) − log

∑
q

∏
t

p(qt|xt)
p(qt)

p(qt|qt−1) − log
∑

q
∏

t p(qt|x)

Transition probas
Prior probas

Forward-backward
α, β Same eqns. except for transition/prior probabilities

N.B. – CTC is associated with a specific topology for standalone NN recognition

CTC = HMM training, without transition/prior probabilities (zeroth-order model), and with a
specific topology (for standalone NN recognition)
=⇒ CTC could be applied with different topologies, to other kinds of NN than RNN

CTC = Cross-entropy training + forward-backward to consider all possible segmentations
=⇒ we can compare the training strategies, see the effect of forward-backward, with different
topologies
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Framewise and CTC
MLPs RNNs

−→ CTC works well with RNNs, not so much with MLPs
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Framewise and CTC
MLPs RNNs

−→ Forward-backward aspect do not improve the results, and is worse with
too few states
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Framewise and CTC
MLPs RNNs

−→ The blank symbol only helps with a few states for CTC training, ...
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Framewise and CTC
MLPs RNNs

−→ ... and for framwise training too, although not as much as adding a state
to the character models
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Framewise and CTC
MLPs RNNs

−→ Forward-backward with blank do not improve so much the results
except with only a few states

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition 86 of 55

(MLP: 2x1024, ±5 frames - RNN: 1x100))



Framewise and CTC
MLPs RNNs

−→ CTC+blank, with one-state models, is especially suited to RNNs
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Framewise vs. CTC - Nets alone

Framewise -- Label Classification Error (frame level)
States 1 2 3 4 5 6 7

MLP No blank 23.8 24.7 25.8 26.2 28.2 29.3
Blank 17.1 18.8 20.8 22.0 23.2 25.4 28.5

RNN No blank 14.4 15.4 16.3 17.2 19.6 20.7
Blank 11.3 12.8 14.2 15.0 16.0 19.0 22.2
CTC -- Label Edit Distance (sequence level)
States 1 2 3 4 5 6 7

MLP No blank 77.0 53.8 44.4 39.6 34.8 32.6
Blank 18.5 18.9 21.8 26.1 23.9 22.9 24.0

RNN No blank 23.6 19.0 17.7 16.6 15.6 15.8
Blank 9.2 10.7 11.5 11.6 12.2 13.0 13.0
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Framewise vs. CTC - Net+LM

Without blank With blank
States Framewise CTC Framewise CTC

MLP 1 - - 19.6 / 9.0 17.6 / 7.4
2 17.8 / 8.2 19.1 / 8.5 16.0 / 6.3 16.4 / 6.7
3 15.0 / 6.1 15.2 / 6.1 14.4 / 5.5 16.4 / 6.5
4 13.6 / 5.3 13.3 / 4.9 14.1 / 5.2 14.9 / 5.6
5 13.2 / 4.8 13.0 / 4.5 13.9 / 5.2 14.9 / 5.6
6 12.4 / 4.6 12.6 / 4.3 14.3 / 5.9 16.1 / 6.4
7 12.8 / 4.8 12.7 / 4.3 16.0 / 6.7 17.4 / 7.0

RNN 1 - - 18.7 / 8.2 13.1 / 4.9
2 17.7 / 7.5 19.3 / 8.0 15.9 / 6.1 13.9 / 5.0
3 15.4 / 5.6 16.5 / 6.1 14.4 / 5.8 14.3 / 5.2
4 14.2 / 5.4 14.1 / 5.3 13.8 / 5.3 13.9 / 5.1
5 14.2 / 5.1 13.7 / 5.0 14.3 / 5.2 14.2 / 5.1
6 14.0 / 5.1 14.1 / 4.9 14.6 / 5.8 15.3 / 5.8
7 14.6 / 5.2 14.5 / 5.1 15.7 / 6.4 14.2 / 5.4
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Framewise vs. CTC - Outputs
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CTC - Outputs in training
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CTC - Why peaks
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CTC - No blank problem

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition 92 of 55



Combination

Two methods:

• ROVER: transcription-level (Fiscus, 1997)

• Lattice-based (Xu et al., 2011)

Rimes IAM
WER% CER% WER% CER%

Deep MLP Features 12.5 3.4 10.9 3.7
Pixels 12.6 3.8 11.7 4.0

Deep RNN Features 12.8 3.8 11.2 3.8
Pixels 12.7 4.0 11.4 3.9

ROVER combination 11.3 3.5 9.6 3.6
Lattice combination 11.2 3.3 9.6 3.3
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International Evaluations

With A2iaLab:

• 1st in OpenHaRT'13 restricted track
2nd in unrestricted track

• 1st in MAURDOR'13 evaluation

• participation to HTRtS'15 evaluation (results not yet public)

Own system:

• 2nd in HTRtS'14 restricted track
2nd in unrestricted track
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Effect of linguistic constraints

MLPs
Features Pixels

WER% CER% WER% CER%

Rimes no lexicon 61.1 17.8 59.5 17.8
lexicon 26.9 6.8 26.1 7.2

lexicon+LM 12.5 3.4 12.6 3.8

IAM no lexicon 54.7 15.8 54.2 15.6
lexicon 24.7 7.7 25.5 8.0

lexicon+LM 10.9 3.7 11.7 4.0

RNNs
Features Pixels

WER% CER% WER% CER%

Rimes no lexicon 20.1 5.1 20.9 5.6
lexicon 16.7 5.3 16.4 4.3

lexicon+LM 12.8 3.8 12.7 4.0

IAM no lexicon 27.5 7.9 24.7 7.3
lexicon 17.6 5.5 16.7 5.3

lexicon+LM 11.2 3.8 11.4 3.9
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Illustration of LM limitations

(RNNs, comparison of RNN-CER of net alone and CER with LM)
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Effect of decoding parameters (MLPs)

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition 97 of 55



Effect of decoding parameters (RNNs)
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Artificial Neurons

Simple Neuron

• Each term of a vector of input is multiplied by some weight

• A non-linear activation function is applied to the sum

• The result is the output of the neuron

• The weights are the parameters of the model, adjusted by training
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Artificial Neurons

Simple Neuron Recurrent Neuron

The inputs of the neuron include the output at the previous timestep.
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Artificial Neurons

Simple Neuron Recurrent Neuron LSTM Neuron

A gating mechanism, with adjustable weights, controls the flow of
information into and out of the neuron, and the update of the internal state.
(Hochreiter & Schmidhuber, 1997; Gers, 2001)
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Artificial Neural Networks

Layered Structure

LSTM Neuron

Neural Networks

Bidirectional RNN
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Artificial Neural Networks

Layered Structure LSTM Neuron

Neural Networks

Bidirectional RNN

Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition 100 of 55



Neural Network Training

Gradient-descent by backpropagation of the error
Given a training set
S = {(x, y)}

..1 compute the output of
each layer in turn
(ini+1 = outi)

..2 compute a measure of
error E between actual
and expected output
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Neural Network Training

Gradient-descent by backpropagation of the error

..1 propagate the error
backward using
∂E
∂in = ∂E

∂out
∂out
∂in

..2 compute the gradient wrt
the parameters
∂E
∂θ

= ∂E
∂out

∂out
∂θ

..3 update the parameters
using θ ← θ − η ∂E

∂θ
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Neural Network Training
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..1 propagate the error
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the parameters
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For recurrent networks, also propagate the error back in time (Werbos,
1990).
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