
Deep Neural Networks
– Applications in

Handwriting Recognition
Théodore Bluche

theodore.bluche@gmail.com
São Paulo Meetup - 9 Mar. 2017

mailto:theodore.bluche@gmail.com
mailto:theodore.bluche@gmail.com
mailto:theodore.bluche@gmail.com
mailto:theodore.bluche@gmail.com

Who am I?

PhD defended at Université Paris-Sud in 2015
Deep Neural Networks

for Large Vocabulary Handwritten Text Recognition

Now working as a Reasearch Engineer at a2ia in Paris
 … automatic document processing (handwriting recognition and more…)

 … part of the research team (6 people)
 … implementation of new neural networks
 … improving the speed and accuracy of production models
 … build the models of tomorrow

Théodore Bluche <theodore.bluche@gmail.com>

2

mailto:theodore.bluche@gmail.com

Handwriting Recognition …

Goal:
Convert scanned document
(image) to text

3

… is full of challenges
4

Puzzle
What characters are those?

5

Answer:
u, (part of) m, en, n! → hard to segment characters, then recognize!

6

Offline Handwriting Recognition

➔ Challenges
○ the input is a variable-sized two-dimensional image
○ the output is a variable-sized sequence of characters
○ the cursive nature of handwriting makes a prior segmentation into characters difficult

“Look!” he went on earnestly. “You’re not…
to write up Pericles in some way or other…
you?” “What is there to write up?” said
Bawley. “There are forty-three submarines..
the Navy - why should I pick on Pericles?”
John eyed him steadily. “It’s the Principal
business, isn’t it?” he said quietly.

Li
ne

 (o
r W

or
d)

Se
gm

en
ta

tio
n

Te
xt

 R
ec

og
ni

tio
n

La
ng

ua
ge

 M
od

el

Outline of this talk

➔ Standard Handwriting Recognition (HWR) System
◆ Image processing - Feature Extraction - Optical Model - Hidden Markov Model - Language Model

➔ Deep Neural Networks for HWR -- plugging NNs in the system
◆ Neural Nets : Multilayer perceptrons | Recurrent Neural Networks
◆ Deep Neural Nets …
◆ … automatically learn good features and context

➔ End-to-End HWR -- from pixels to text
◆ Multidimensional Recurrent Neural Networks
◆ Attention-based methods

8

Outline of this talk
➔ Standard Handwriting Recognition (HWR) System

◆ Image processing - Feature Extraction - Optical Model - Hidden Markov Model - Language Model

➔ Deep Neural Networks for HWR -- plugging NNs in the system
◆ Neural Nets : Multilayer perceptrons | Recurrent Neural Networks
◆ Deep Neural Nets …
◆ … automatically learn good features and context

➔ End-to-End HWR -- from pixels to text
◆ Multidimensional Recurrent Neural Networks
◆ Attention-based methods

➔ Tips and Tricks

9

Coping with different writing styles

Slant correction

Contrast enhancement

Height normalization

Preprocessing examples:

10

Modeling ambiguous cursive text

No segmentation
 → model words directly

Explicit segmentation
 → model chars/parts of chars

Delayed segmentation
 → model sequences of observations

11

The sliding window technique
12

Features (example)

56 handcrafted features extracted from each frame
→ pixel density measures in the frame and different

horizontal regions
→ measures of the center of gravity
→ pixel configuration relative counts
→ pixel density in vertical regions
→ Histogram of Gradients (HoG) in 8 directions
→ ...

13

A Sequence Modeling problem

Optical Model

➔ core component of the system
➔ from pixels / features to characters probabilities

usually one prediction for each frame / window,
and then decoding with a sequence model such as
HMM to handle different sequence lengths

Language Model

➔ inclusion of prior knowledge / constraints
➔ e.g. a vocabulary to allow only character

sequences that form known words
➔ + statistics on large text corpora to promote

frequent sequences of words

nb. in practice we have many char. sequence hypotheses,
and the LM weights them

14

Hidden Markov Models (quickly)
Each character is associated with a small HMM = states and transitions

- transition model = probabilities to go from one state to the other
- each state is associated with a distribution of probabilities over features (optical model here) used to match

frames to states

Sequences of characters (e.g. words) are modeled by
the concatenation of HMMs

15

Language Model

➔ Model the sequence of words (chain-rule)

n-gram assumption (probas derived from counts in a big
textual corpus)

Recognition
Handwriting recognition = find the most likely sequence of words given observations

16

Optical Model

➔ in the optical model, words are represented by
HMMs (i.e. sequences of states)

(including Markov assumption and computed efficiently
with dynamic programming)

More about HMMs and recognition with LM…
For more details, you may read :

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE,
77(2), 257-286.

Frederick Jelinek. (1997). Statistical methods for speech recognition. MIT press.

Camastra, F., & Vinciarelli, A. (2008). Machine Learning for Audio, Image and Video Analysis. Springer.

…

17

Historical System
- Input image
- Preprocessing
- Sliding window
- Feature extraction
- Hidden Markov Models

- Emission model = Gaussian mixtures
- Transition models = states → characters

- Vocabulary
- Language model

18

State-of-the-art
➔ First steps (preproc, features) =

◆ normalize and reduce variabiliy
◆ possible loss of relevant information

➔ Last steps (HMM, language model) =
◆ add constraints to help correct optical model’s mistakes
◆ cannot recognize out-of-vocab words, may add mistakes

➔ Optical model = core of the system
◆ from image (features) to text (characters, or parts of characters)
◆ goal : try to avoid design of good preproc / feature extraction /

character models and to rely less on language constraints
(ultimately, if all characters are well recognized, we wouldn’t
need an LM)

➔ DEEP NEURAL NETWORKS

19

Historical System → Neural Nets
- Input image
- Preprocessing
- Sliding window
- Feature extraction
- Hidden Markov Models

- Emission model = Gaussian mixtures
- Transition models = states → characters

- Vocabulary
- Language model

(Deep) Neural Network

20

Outline of this talk

➔ Standard Handwriting Recognition (HWR) System
◆ Image processing - Feature Extraction - Optical Model - Hidden Markov Model - Language Model

➔ Deep Neural Networks for HWR -- plugging NNs in the system
◆ Neural Nets : Multilayer perceptrons | Recurrent Neural Networks
◆ Deep Neural Nets …
◆ … automatically learn good features and context

➔ End-to-End HWR -- from pixels to text
◆ Multidimensional Recurrent Neural Networks
◆ Attention-based methods

21

Simple Neuron
Multiply each input value by a weight, sum, apply non-linear function, output new value

22

Layers

A layer computes a simple function

… for example :

23

Handling sequential data
Apply the same layer at each timestep

24

Neurons/Layers for sequential data

Simple Recurrent

25

LSTM

A recurrent neuron is just a simple
neuron with previous output as
additional input.

A Long Short-Term Memory (LSTM)
neuron also has an internal state and
gates to control the flow of
information.

Gates are simple neurons and LSTM
may be viewed as a mini-neural net.

Long Short-Term Memory

A very good step-by-step tutorial (from which my diagram are inspired) by Christopher Olah
http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (a MUST-READ!)

26

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory

- The inputs are those of a reccurent neuron (input x(t) + previous output y(t-1))
- The internal state is propagated from the previous timestep
- Three gates with sigmoid (= soft 0/1) activation function to control the flow of

information (they are kinds of simple neurons)
- The forget gate (f) controls whether the previous internal state is added to the current state
- The input gate (i) controls whether the input, transformed by a simple neuron (c), is added to the current

state
- The output gate (o) controls whether the internal state leaves the neuron (after a tanh activation)

- The output (y(t)) is tanh of the current state, modulated with the output gate

27

Layers to Neural Networks
→ A layer outputs a new vector from an input
vector.

→ It may be viewed as learnt features

→ It can be used as the input of a neural network

= a neural network is obtained by stacking layers
of neurons.

(may be feed-forward or recurrent)

28

Gradient Descent Training
Given a measure of error E on a training set
(x,y), find the best parameters (minimizing it) :

E

gradient < 0

update

i.e.

Gradient descent :

Only requirement : the error measure (or cost function) should be differentiable w.r.t the parameters

29

Neural Nets training with Backpropagation
Backpropagation : exploit layered network structure to do gradient descent efficiently

Propagation of the error gradient from
one layer to the previous one

Computation of the gradient w.r.t. the
parameters of one layer

= you need to know how to compute

- the gradient of the cost function (that you’ll minimize) w.r.t. the outputs of the network
- for each layer : the gradient of the output w.r.t. the input and the parameters

… the rest is only multiplications

(http://arunmallya.github.io/writeups/nn/backprop.html : derivatives for simple costs/layers)

30

http://arunmallya.github.io/writeups/nn/backprop.html

Neural Nets training with Backpropagation
1. Propagate the input forward, layer by layer
2. Compute the error from output and target
3. Compute its gradient w.r.t. the output
4. Propagate the error gradient backward, layer

by layer, using chain rule, and compute the
gradient w.r.t parameters

Recurrent network are “unfolded” in
time so they can be seen as
feed-forward networks
(or directed acyclic graphs)

31

A word about softmax
→ There are as many outputs of the network as classes in the classification problem
(e.g. HMM states, characters, …)

→ Each output represents a score for the corresponding class

→ With a simple softmax normalization, they can represent a probability for each class :

32

→ Hence a cost function can be devised so as to maximize the probability of the correct
class (and this cost is easy to differentiate w.r.t. the outputs of the network)

Frame classification (MLP style)
➔ Input = one frame = one vector of pixel or feature values
➔ Output = posterior probabilities over HMM states (or sometimes

characters)

Training :

➔ Collect a dataset of (xt, qt) = frames with correct HMM state
➔ Minimize - log p(qt | xt)
➔ Measure the Frame Error Rate (% of frames with wrong HMM state prediction)

33

Sequence classification (RNN style)
Option 1

➔ Same as MLP except hidden
layers depend on the values at
(t-1) or (t+1)

➔ i.e. HMM states or characters
are predicted potentially
taking into account larger
context

➔ Can follow the same training
method for each t

34

Sequence classification (RNN style)
Option 2 : CTC

➔ To train the network directly with frame sequences and character sequences
➔ i.e. no need to label each frame with an HMM state

Minimize :

-log p (c1, c2, … cN | x = x1, x2, … xT)

➔ Measure the Character Error Rate (% of character substitutions, deletions or insertions)

Sequence sizes are not equal !!!

35

Connectionist Temporal Classification (CTC)
→ The network outputs characters (not HMM states)
→ Problem T items in the output sequence, N items in the target char sequence
→ Make sure that T > N and define a simple mapping of sequences that removes duplicates:

→ Computed efficiently with dynamic programing
→ Problem how to output ABB (AAABBBBBB → AB) ?

AAABBCCCC → ABC
ABBBBBCCC → ABC

...
AAAABCCCC → ABC

= Net’s output at time t

36

Connectionist Temporal Classification (CTC)

→ Problem how to output ABB (AAABBBBBB → AB) ?
→ The network outputs characters + a special NULL (or blank or non-char) symbol -
→ The mapping removes duplicates, and then NULLs

AAABBCCCC → ABC
AA-BB--C- → A-B-C- → ABC

...
-A--B--C- → -A-B-C- → ABC

AAABBBBBB → AB
AA-BB--B- → A-B-B- → ABB

...
-A--B--B- → -A-B-B- → ABB

37

Historical System → Neural Nets
- Input image
- Preprocessing
- Sliding window
- Feature extraction
- Hidden Markov Models

- Emission model = Gaussian mixtures
- Transition models = states → characters

- Vocabulary
- Language model

(Deep) Neural Network

38

Standard GMM → Neural Net → Deep Neural Net

→ Big improvement by using neural
nets instead of GMMs

→ Similar big improvement by using
deep neural nets instead of shallow
neural nets

39

Historical System → Neural Nets
- Input image
- Preprocessing
- Sliding window
- Feature extraction
- Hidden Markov Models

- Emission model = Gaussian mixtures
- Transition models = states → characters

- Vocabulary
- Language model

(Deep) Neural Network

40

Outline of this talk

➔ Standard Handwriting Recognition (HWR) System
◆ Image processing - Feature Extraction - Optical Model - Hidden Markov Model - Language Model

➔ Deep Neural Networks for HWR -- plugging NNs in the system
◆ Neural Nets : Multilayer perceptrons | Recurrent Neural Networks
◆ Deep Neural Nets …
◆ … automatically learn good features and context

➔ End-to-End HWR -- from pixels to text
◆ Multidimensional Recurrent Neural Networks
◆ Attention-based methods

41

Neural Networks for Images (pixel level)

→ Instead of a feature vector, the input is only one pixel
value (or a vector of 3 RGB values for color images)

→ The network is replicated at each position in the image

42

Feature Maps

→ The outputs of one hidden layer for a pixel may be viewed as
new “pixel” values, defining new channels

→ Since the network is replicated, each output have a similar
meaning across all pixels (but different values)

→ So a given output across the whole image defines a new (kind
of) image : a feature map

in the end, it’s just a way of representing or interpreting the net…

43

e.g. Convolutional Neural Network
→ We can include spatial (structured) context :

instead of giving 1 pixel value at the current position, we give
the values of all pixels in a given neighborhood

→ This is still replicated at all positions = convolution,
with kernel defined by the weights

→ You can reduce the size of the feature maps by replicating
the net every N positions (output will be N times smaller)

(nb: also possible to have convolution in sequential nets…)

44

e.g. Multi-Dimensional Recurrent Neural Networks
→ As for sequences, you can make the network
recurrent

the input at a given position includes the
outputs of the same layer at neighbors

45

Multidimensional RNN
→ MD Recurrent + Convolutional layers

→ applied directly to the pixel of the raw text line
image

→ A special Collapse layer on top to get sequential
representation

→ Trained with CTC to output character sequences

Current State-of-the-art!

46

Historical System → Neural Nets
- Input image
- Preprocessing
- Sliding window
- Feature extraction
- Hidden Markov Models

- Emission model = Gaussian mixtures
- Transition models = states → characters

- Vocabulary
- Language model

(Deep) Neural Network

47

Historical System → Neural Nets
- Input image
- Preprocessing
- Sliding window
- Feature extraction
- Hidden Markov Models

- Emission model = Gaussian mixtures
- Transition models = states → characters

- Vocabulary
- Language model

(Deep) Neural Network

In several setups, we even see that a vocabulary
does not help (because of high out-of-vocabulary
words rate) → right now, hybrid word/character
language models are best…

48

Attention Neural Network
→ An Attention Neural Network predicts
 where to look next
→ = a distribution of probability over
positions in the feature maps

→ the sum of the feature vectors across all
positions in the maps, weighted by the
attention network output is fed to a neural
network which recognize the next character

= attention net + decoder is applied N times

49

50

Historical System → Neural Nets
- Input line paragraph image
- Preprocessing
- Sliding window
- Feature extraction
- Hidden Markov Models

- Emission model = Gaussian mixtures
- Transition models = states → characters

- Vocabulary
- Language model

(Deep) Neural Network

51

To conclude…
→ Historically, HWR was: preprocessing, feature extraction, Gaussian HMMs, Language model
→ With deep neural networks, we can recognize character sequences from the raw image

- with enough data, the preproc is less useful and we avoid loss of information
- same with features, which are learnt and task-specific
- same with character modeling: we can output character sequences directly

→ NB: data/preproc/feature engineering disapear, but now : model engineering
→ NB: you need a lot of data

→ Historically, HWR was: recognition of chars, then words, then lines : moving toward
recognition of paragraphs and full pages

→ Note : also, deep neural nets for layout analysis, language models, …

52

Thanks for your
attention

Théodore Bluche
theodore.bluche@gmail.com

(do not hesitate to reach me if you have questions)

A few refs…

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006).
Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning (pp. 369-376).
((CTC -- briefly explained in first part))

Graves, A., & Schmidhuber, J. (2009). Offline handwriting recognition
with multidimensional recurrent neural networks. In Advances in
neural information processing systems (pp. 545-552).
((MDLSTM-RNN -- the state-of-the-art, still, 7 years later))

Bluche, T. (2015). Deep Neural Networks for Large Vocabulary
Handwritten Text Recognition (Doctoral dissertation, Université
Paris Sud-Paris XI).
((my thesis -- many refs / results inside))

Bluche, T., Louradour, J., & Messina, R. (2016). Scan, Attend and
Read: End-to-End Handwritten Paragraph Recognition with
MDLSTM Attention. arXiv preprint arXiv:1604.03286.
((Attention-based neural nets))

… …

mailto:theodore.bluche@gmail.com
mailto:theodore.bluche@gmail.com

Features vs. Pixels
54

MLP RNN

Input vector = all the raw pixel values in the window
flattened as a single vector of WxH dimensions

What happens in the net? (bottom)
55

MDLSTM (4 directions)

Convolutions

Sum + tanh

Simple features
(like oriented edges, …)

What happens in the net? (middle)
56

Complex features
(like loops, ascenders,

vertical strokes, …)

MDLSTM (4 directions)

Convolutions

Sum + tanh

What happens in the net? (top)
57

More abstract features
(combination of features,

closer to character level…)

MDLSTM (4 directions)

Collapse

Softmax

Impact of the net’s depth
58

MLP RNN

Impact of the net’s depth
59

→ At constant number of free
parameters in the models,
deeper nets give better results

Tips & Tricks
→ The theory is pretty simple (linear algebra, simple derivatives, basic probabilities, standard
numerical optimization)

→ The practice is a mess …

- optimization theory is solid for convex problems, deep learning is highly non-convex
- gradient descent is theoretically sound when applied to the whole training set at once,

but we do it example-wise (stochastic GD), and want to minimize the cost while preserving
generalization = non standard optimization

- The learning rate is probably the most important parameter to tune

60

Tips & Tricks - Optimization
→ The first step is to define a good cost function = what you want to minimize = should
represent your problem

→ The dymanics of training is quite important (even when it should work, it does not always).
The non-linearities and values of the weights will play a role

- a good initialization of the weights is often crucial (a simple random init. is rarely
sufficient, there are rules of thumb for good initialization ; when possible, initialize the
weights with those of a net already trained for another task)

- Regularization (weight decay, dropout, …) is especially important with deep neural nets
with a lot of parameters

- Plain SGD can be improved (e.g. look for momentum, ADAGRAD, etc.)

61

Tips & Tricks - Training
→ Deep learning solves complicated problems, but with complicated models

- Check first if a simple model is not sufficient
- Complicated model are complicated to train : think curriculum = start simple and increase

complexity
- Most methods are gradient-based. Everybody makes mistakes. When implementing neural

nets, always check your gradients are right (remember the definition of a derivative)
- The devil is in the details : when you try to implement something you read in a paper,

pay attention to every details (of the net, data, optimization, etc.) and remember that
author do not always tell them… (not as easy as it seems)

- The answer to “is it a good model for my problem?” is often “try!”

62

Tips & Tricks - Deep Learning
It is not magic!! (although it often looks like it)

→ It is a lot of parameters = a lot of data needed to adjust them + a good implementation to do
it fast + good initialization / formulation of the problem / optimization method.
(if not enough data, don’t expect miracle and spend time for preproc/feature extraction OR data augmentation)

→ It is maths + a lot of “cooking” : knowing about pastas, tomatoes and beef is not enough to
make a good bolognese, you should also learn the good recipes!

→ A lot of intuition, understanding and good ideas will come with experience (and vice-versa).
Play with models and problems, you’ll end up having a sense of want could work and what won’t…

→ … but question what/why you are doing, don’t just download ML libraries to run experiments

63

