International Conference on Document Analysis and Recognition, Nancy

The LIMSI Handwriting Recognition System for the HTRtS 2014 Contest

Théodore Bluche, Hermann Ney, Christopher Kermorvant

August 25, 2015

Comprendre le monde, construire l'avenir®

The HTRtS 2014 Contest

- Handwritten Text Recognition tranScriptorium
- Part of the tranScriptorium project aiming at transcribing old manuscripts using HTR systems
- The data comes from the Transcribe Bentham collaborative project

Bentham Manuscripts

2.9. Such of Prand & load of the training - 4001120 the can take to hangeness where in the facto it and that it inperson the last fifth of the state to the factor of a second which the monomial is a second fifth they the the factor of a second a last form Miles the number of Courier, which the Paneparin por persons Majerty relative to the building of Peristenting these for confining and complexing in hard below, portons invited & paurantath and other Comment I undustand the dyet of these Acts to be, that ouch Pententiary House should be used prescriptly as neptache for such nanopotally convict, as the sucral gads of the continue, till an opportunity may offer for thus being trans with request to de probable our a dat of the unpetition amounts. no valor and our be adored than in all and find her of the par las years of Prese : det & the mining exercistion the mensor would of his dock the quantifolance the define A to shar Convile, it will the Judges who by them. what mum red squatter win to proper to confine in the Romeption this with accuracy the sumber to a dis & unfilliting un but I makine to think it would to Bu by him setilation a die of the b to be pough for for such - Recence how the Compton hade t. 0 Let H Remifiens like these were they flow to be cophille Estimate then parmeeting it. The chief use of them is to adjust the

- Manuscripts from J. Bentham (British philosopher, 1748-1832)
- Written by himself and his secretary staff
- About law and moral
- Collected by UCL for the tranScriptorium project

Difficulties Hyphenations

of the mode of reference take adopted on an seea = tirely cido ings. : rent member .

Crossings

in criminal descenter which See a moderate punishment, may have its use. It may coexidealus he

Paper

in an open place. Soe Title of Corporal Puniuhment

The LIMSI Handwriting Recognition System for the HTRtS 2014 Contest

Introduction

Overview

Introduction

The HTRtS 2014 Contest

Data Preparation

Image Preprocessing and Feature Extraction Language Models and Recognition System

Restricted Track: A Combination of Systems

Deep Multi-Layer Perceptrons Deep Bidirectional Long Short-Term Memory Networks Combination

Unrestricted Track: A Study of the Importance of Data Adding Data to the Training of Optical Models Adding Data to the Training of Language Models

Post-Evaluation Improvements, and the HTRtS 2015 Contest

Conclusion

The HTRtS 2014 Contest

Introduction

The HTRtS 2014 Contest

Data Preparation

Image Preprocessing and Feature Extraction Language Models and Recognition System

Restricted Track: A Combination of Systems

Deep Multi-Layer Perceptrons Deep Bidirectional Long Short-Term Memory Networks Combination

Unrestricted Track: A Study of the Importance of Data Adding Data to the Training of Optical Models Adding Data to the Training of Language Models

Post-Evaluation Improvements, and the HTRtS 2015 Contest Conclusion

Data

Set	#Pages	#Lines	#Words	(unique)	#Characters	(unique)
Train	350	9,198	76,707	(12,104)	419,764	(93)
Dev.	50	1,415	11,580		64,070	
Eval.	33	860	7,868		40,231	

- Whole pages are available
- Cropped text lines and their transcript
- Only a few scripters (Bentham + staff)

Evaluation

- Two months to build the systems, one week to produce test set results
- The system performance is measured with the Word Error Rate (WER%).

- Restricted track: only the provided data are allowed to train the systems
- Unrestricted track: participants can use additional data to build the optical and language models

Data Preparation

Introduction

The HTRtS 2014 Contest

Data Preparation

Image Preprocessing and Feature Extraction Language Models and Recognition System

Restricted Track: A Combination of Systems Deep Multi-Layer Perceptrons Deep Bidirectional Long Short-Term Memory Networks Combination

Unrestricted Track: A Study of the Importance of Data Adding Data to the Training of Optical Models Adding Data to the Training of Language Models

Post-Evaluation Improvements, and the HTRtS 2015 Contest Conclusion

Image Preprocessing

The systems are trained with text lines cropped from the whole 300 DPI document images.

Preprocessing:

- Conversion to gray-level
- Deslant from Buse et al. (1997)
- Contrast enhancement: mapping the 5% darkest pixels to black and 70% lightest ones to white + linear interpolation
- Height normalization to 72px

Feature Extraction

Handcrafted features (Bianne-Bernard, 2011)

- Sliding window of 3px, with 3px step
- 56 handcrafted features extracted from each frame
 - 8 pixel density measures
 - 12 pixel configurations
 - HoG in 8 directions
 - + deltas (= 28 + 28)

(Bianne-Bernard, 2011)

Pixel values

- Sliding window of 57px, with 3px step
- Rescaled to 25 x 32px (keeps aspect-ratio)
- Extraction of the 800 gray-level pixel intensities per frame

Language Models: Dealing with Hyphenation

Corpus preparation:

- extraction of complete paragraphs of text
- ignore lines with a single word (consider them as simple paragraph)
- reconstruction of whole words from hyphenated ones

Tokenization:

- split sequences of digits / currency symbols
- isolate punctuation symbols

LM estimation:

- generate ngram counts
- for words with unigram counts greater than a threshold: generate all possible hyphenations using Pyphen¹
- add all word beginnings / endings with the different hyphenation symbols to unigrams with count 1.

 \longrightarrow 4gram with Witten-Bell smoothing (Witten & Bell, 1991), vocabulary of 32k words (7k words + hyphenations), 5.5% OOV, ppl 101.

¹http://pyphen.org/

Decoding

- Hybrid NN/HMMs with ngram language models
 - 6-state models for Multi-Layer Perceptrons (framewise cross-entropy training from GMM/HMM alignments)
 - 1-state models for Recurrent Neural Nets (trained with Connectionist Temporal Classification)
- Neural nets predict HMM state q_t
- FST-based decoding with the KALDI Toolkit using scaled posteriors $p(q_t | \mathbf{x}_t) / p(q_t)$

Restricted Track: A Combination of Systems

Introduction

The HTRtS 2014 Contest

Data Preparation

Image Preprocessing and Feature Extraction Language Models and Recognition System

Restricted Track: A Combination of Systems

Deep Multi-Layer Perceptrons Deep Bidirectional Long Short-Term Memory Networks Combination

Unrestricted Track: A Study of the Importance of Data Adding Data to the Training of Optical Models Adding Data to the Training of Language Models

Post-Evaluation Improvements, and the HTRtS 2015 Contest Conclusion

Artificial Neural Networks

Restricted Track: A Combination of Systems

Artificial Neural Networks

Multi-Layer Perceptrons: impact of depth and context

- 1,024 sigmoid units per layer
- RBM layerwise pre-training with contrastive divergence
- Cross-entropy framewise training from GMM/HMM alignments

Multi-Layer Perceptrons: sequence-training

State-Level Minimum Bayes Risk (sMBR; Kingsbury (2009)), maximize:

$$E_{sMBR} = \sum_{(\mathbf{x}, \mathbf{W}_{ref}) \in S} \frac{\sum_{\mathbf{W}} p(\mathbf{x} | \mathbf{W}) P(\mathbf{W}) A(\mathbf{W}, \mathbf{W}_{ref})}{\sum_{\mathbf{W}'} p(\mathbf{x} | \mathbf{W}') P(\mathbf{W}')}$$

Improvement brought by sMBR sequence training on the validation set

Features	WER	CER	
Handcrafted	21.0%	8.9%	
+ sMBR training	19.4% (-7.6%)	7.9% (-11.2%)	
Pixels	22.6%	10.7%	
+ sMBR training	19.9% (-11.9%)	8.2% (-23.4%)	

BLSTM-RNNs: impact of depth

Adding dropout

	Feat	ures
	WER	CER
7x100	18.5%	7.5%
7x200	18.0%	7.0%
+ dropout	17.2%	6.7%
	Pix	els
7x100	21.4%	8.8%
7x200	20.6%	8.4%
+ dropout	18.7%	7.3%

- 100 tanh units per layer (in each LSTM direction, and each feed-forward)
- no pre-training

35

CTC training from character sequences

ROVER / Lattice Combination

Syste	em	WER%	CER%
GMM-HMM	Features	27.9	14.5
Deep MLP Features		19.4	7.9
	Pixels	19.9	8.2
Deep RNN	Features	17.2	6.7
	Pixels	18.7	7.3

Summary of results of restricted systems.

Comparison of combination techniques for the four restricted track systems.

Method	WER%	CER%
ROVER combination (Fiscus, 1997)	16.0	6.6
Lattice combination (Xu et al., 2011)	15.4	5.9

Restricted track Results

Competition Results for the Restricted Track.

Moc	WER%	
Deep MLP	Features	19.0
	Pixels	20.0
Deep RNN Features		17.1
	Pixels	19.0
Lattice co	15.0	
CITI	14.6	

Unrestricted Track: A Study of the Importance of Data

Introduction

The HTRtS 2014 Contest

Data Preparation

Image Preprocessing and Feature Extraction Language Models and Recognition System

Restricted Track: A Combination of Systems Deep Multi-Layer Perceptrons Deep Bidirectional Long Short-Term Memory Networks Combination

Unrestricted Track: A Study of the Importance of Data Adding Data to the Training of Optical Models Adding Data to the Training of Language Models

Post-Evaluation Improvements, and the HTRtS 2015 Contest Conclusion

Adding Data to the Training of Optical Models

The LIMSI Handwriting Recognition System for the HTRtS 2014 Contest

Unrestricted Track: A Study of the Importance of Data Adding Data to the Training of Optical Models

Adding Data to the Training of Optical Models

Collecting Data

Track	Name	Number of text lines
Restricted	Bentham	9,198
Unrestricted	IAM	6,482
	NUMEN	11,710
	G. Washington (GW)	642
	IBM UB 1	825
	A. Lincoln (AL)	3,960

Data used for optical model training.

Generating Annotations

For IBM and AL, the line positions are unknown, we only have the images and the transcripts

 \longrightarrow automatic line segmentation and ground-truth alignment using the technique presented in (Bluche et al., 2014)

Effect of Adding Data to the Training of Optical Models

- **uRNNI** : Bentham, G. Washington, subset of IAM, Numen and A. Lincoln
- **uRNN2** : Bentham, G. Washington, subset of IAM, Numen, IBM and A. Lincoln
- **uRNN3** : Bentham, G. Washington, IAM, IBM, A. Lincoln and Numen

Name	Training data	RNN-CER%	WER%
RNN features	Bentham	8.9	17.2
uRNN1	Bentham, GW, sIAM,		
	sNumen, sAL	7.5	16.5
uRNN2	Bentham, GW, sIAM, sNumen,		
	sIBM, sAL	6.6	15.8
uRNN3	Bentham, GW, IAM, Numen,		
	IBM, AL	6.6	15.8

Effect of Adding Data to the Training of Language Models

- Adding the Open American National Corpus (OANC, Ide & Suderman (2007))
- Vocabulary: 110k words (80k words + hyphenations), 2.5% OOV
- 2gram LM and lattice rescoring with 3grams, ppl 250

Improvements brought by adding more LM data (WER% / CER%;).

		Restricted LM	Unrestricted LM
Deep MLP	Features	19.4 / 7.9	16.7 / 6.9
	Pixels	19.9 / 8.2	17.5 / 7.5
Deep RNN	Features	17.2 / 6.7	14.9 / 5.7
	Pixels	18.7 / 7.3	16.3 / 6.4
Lattice combination		15.4 / 5.9	12.5 / 4.9
	uRNN1	16.5 / 6.1	13.4 / 5.1
	uRNN2	15.8 / 5.6	13.1 / 4.8
	uRNN3	15.8 / 5.6	13.1 / 4.8
Lattice cor	nbination	14.6 / 5.4	11.8 / 4.8

Results of the Unrestricted Track

Competition Results for the Unrestricted Track.

Model	WER%
RNN features	14.7
uRNN1	12.9
uRNN2	12.7
uRNN3	12.4
Lattice Combination	11.1
A2iA production system	8.6

Post-Evaluation Improvements, and the HTRtS 2015 Contest

Introduction

The HTRtS 2014 Contest

Data Preparation

Image Preprocessing and Feature Extraction Language Models and Recognition System

Restricted Track: A Combination of Systems

Deep Multi-Layer Perceptrons Deep Bidirectional Long Short-Term Memory Networks Combination

Unrestricted Track: A Study of the Importance of Data Adding Data to the Training of Optical Models Adding Data to the Training of Language Models

Post-Evaluation Improvements, and the HTRtS 2015 Contest

Conclusion

A More "Author-Specific" Language Model

- The A2iA production system used Bentham texts retrieved from the web
- OOV rate 1.5%, ppl 215

WER% improvements brought by adding even more LM data.

		OANC	Bentham texts
Deep MLP	Features	16.7	14.0
	Pixels	17.5	14.6
Deep RNN	Features	14.9	13.1
	Pixels	16.3	14.4
Lattice combination		12.5	10.7
	uRNN1	13.4	11.9
	uRNN2	13.1	11.3
	uRNN3	13.1	11.3
Lattice cor	nbination	11.8	9.7

A More Careful Training of Neural Networks

After the evaluation, more time to tune hyper-parameters

- MLP: choice of units per layer, size of context, etc.
- RNN: size of hidden layers, better use of dropout (cf Bluche et al. (2015))

WER% of the refined models (restricted track, validation set).

		Competition	Refined
Deep MLP	Features	19.4	18.6
	Pixels	19.9	19.2
Deep RNN	Features	17.2	16.2
	Pixels	18.7	16.9
Lattice combination		15.4	14.6

Overview of the System for HTRtS 2015

New data

- The validation set became part of the training set, the evaluation set became validation set
- Doubled amount of training data **but without line positions** in the page (using (Bluche et al., 2014) to segment/align)
- Features from Kozielski et al. (2013) provided by organizers with the data

New system

- We built the same RNN architecture as 2014 + subsampling
- Sliding window of 4px and shift 2px for all features (handcrafted, pixels, and provided)
- We trained one RNN for each feature set
- early combination: remove the top layer of each RNN and add a shared LSTM layer one top of all three RNNs
- We built a hybrid word/character LM (word trigram with 5k/15k vocab., char 7gram)

Post-Evaluation Results

Restricted track

Unrestricted track

Model		WER%	CER%	Model		WER%	CER%
MLP	Features	18.6	7.5	MLP	Features	13.2	4.9
	Pixels	20.9	8.2		Pixels	14.4	6.1
RNN	Features	16.2	5.4	RNN	Features	11.2	4.0
	Pixels	16.9	5.9		Pixels	11.5	4.4
Lattice combination		14.1	5.0	uRNN1		10.9	4.0
CITIab		14.6	-		uRNN2	10.5	3.7
Ours (Competition)		15.1	-	uRNN3		10.2	3.6
HTRtS 2015 system*		07 20	20	Lattice	combination	8.6	3.1
		0./	2.0	A2	iA prod.	8.6	-
				Ours (C	Competition)	11.1	-
				HTRtS	2015 system*	7.6	2.6

*: more training data, and 2014 evaluation set was the validation set for 2015

Conclusion

Introduction

The HTRtS 2014 Contest

Data Preparation

Image Preprocessing and Feature Extraction Language Models and Recognition System

Restricted Track: A Combination of Systems

Deep Multi-Layer Perceptrons Deep Bidirectional Long Short-Term Memory Networks Combination

Unrestricted Track: A Study of the Importance of Data Adding Data to the Training of Optical Models Adding Data to the Training of Language Models

Post-Evaluation Improvements, and the HTRtS 2015 Contest

Conclusion

Conclusion

- We were the only team to submit results in both tracks and ranked second in each
- The contest was a good opportunity to
 - compare two kinds of inputs (features and pixels)
 - compare two kinds of NN optical models (MLP and RNNs)
 - try different combination methods
 - study the impact of added training data for optical and language models
- We also proposed a simple way of dealing with hyphenation

Thank you for your attention!

tb@a2ia.com

References

- Bianne-Bernard, A.-L. (2011). Reconnaissance de mots manuscrits cursifs par modèles de Markov cachés en contexte. Ph.D. thesis, Telecom ParisTech.
- Bluche, T., Kermorvant, C., & Louradour, J. (2015). Where to Apply Dropout in Recurrent Neural Networks for Handwriting Recognition? In 13th International Conference on Document Analysis and Recognition (ICDAR), (pp. --). IEEE.
- Bluche, T., Moysset, B., & Kermorvant, C. (2014). Automatic Line Segmentation and Ground-Truth Alignment of Handwritten Documents. In 14th International Conference on Frontiers in Handwriting Recognition (ICFHR2014), (pp. 667--672).
- Buse, R., Liu, Z. Q. & Caelli, T. (1997). A structural and relational approach to handwritten word recognition. IEEE Transactions on Systems, Man and Cybernetics, 27(5), 847-61. URL http://www.ncbi.nlm.nih.gov/pubmed/18263093
- Fiscus, J. C. (1997). A post-processing system to yield reduced word error rates: Recognizer output voting error reduction (rover). In Automatic Speech Recognition and Understanding, 1997. Proceedings., 1997 IEEE Workshop on, (pp. 347--354). IEEE.
- Ide, N., & Suderman, K. (2007). The open american national corpus (oanc). URL http://www.americannationalcorpus.org/OANC/index.html
- Kingsbury, B. (2009). Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. ICASSP 2009., (pp. 3761-3764). IEEE.
- Kozielski, M., Doetsch, P., & Ney, H. (2013). Improvements in RWTH 's system for off-line handwriting recognition. In International Conference on Document Analysis and Recognition (ICDAR).
- Witten, I. H., & Bell, T. (1991). The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression. Information Theory, IEEE Transactions on, 37(4), 1085--1094.
- Xu, H., Povey, D., Mangu, L., & Zhu, J. (2011). Minimum bayes risk decoding and system combination based on a recursion for edit distance. Computer Speech & Language, 25(4), 802--828.

MLP WERs

Word Error Rates of DNNs trained with cross-entropy, with different number of hidden layers and different inputs. on the validation set. The best systems are indicated in bold face.

		Number of hidden layers						
Features	Context	1	2	3	4	5	6	7
Hand-	±1	27.2	26.4	25.9	26.3	25.5	25.7	25.5
crafted	\pm 3	26.2	25.9	26.3	26.2	26.0	26.2	25.7
	\pm 5	27.7	26.3	25.8	26.0	25.7	25.7	25.6
	\pm 7	27.7	27.2	26.0	26.2	25.7	26.1	25.8
	\pm 9	26.5	25.4	25.1	24.4	24.5	24.7	24.6
Pixels	-	33.2	25.0	24.4	23.5	23.8	22.8	22.9

RNN WERs

RNNs on handcrafted and pixel features (results on the validation set, R-CER is the CER of the RNN alone, without LM).

	Handcr	afted Fo	eatures	Pixels			
	R-CER	WER	CER	R-CER	WER	CER	
1x100	17.3	20.6	8.8	38.9	33.8	19.6	
3x100	12.8	18.5	7.5	17.7	22.6	10.2	
5x100	12.0	19.0	7.6	14.0	20.8	8.7	
5x200	11.8	19.9	7.7	14.0	21.4	8.9	
7x100	11.1	18.5	7.5	12.2	21.4	8.8	
7x200	11.0	18.0	7.0	11.8	20.6	8.4	
7x200 + dropout	8.9	17.2	6.7	9.2	18.7	7.3	
9x100	10.6	18.3	7.3	12.1	21.6	8.9	