
Framewise and CTC Training of Neural Networks
for Handwriting Recognition

Théodore Bluche∗†, Hermann Ney †‡, Jérôme Louradour∗ and Christopher Kermorvant∗§
∗A2iA SA, Paris, France

†LIMSI CNRS, Spoken Language Processing Group, Orsay, France
‡RWTH Aachen University, Human Language Technology and Pattern Recognition, Aachen, Germany

§Teklia SAS, Paris, France

Abstract—In recent years, Long Short-Term Memory Recur-
rent Neural Networks (LSTM-RNNs) trained with the Connec-
tionist Temporal Classification (CTC) objective won many inter-
national handwriting recognition evaluations. The CTC algorithm
is based on a forward-backward procedure, avoiding the need of
a segmentation of the input before training. The network outputs
are characters labels, and a special non-character label. On the
other hand, in the hybrid NN/HMM framework, networks are
trained with framewise criteria to predict HMM state labels.
In this paper, we show that CTC training is close to forward-
backward training of NN/HMMs, and can be extended to more
standard HMM topologies. We apply this method to MLPs,
and investigate the properties of CTC, namely the modeling of
character by single labels and the role of the special label.

I. INTRODUCTION

Graves et al. [1] proposed a method to train Recurrent
Neural Networks (RNNs) to label unsegmented sequences:
Connectionist Temporal Classification (CTC). The main argu-
ment that motivated this method was that it does not require
segmented training data, i.e. it requires only an input sequence
and an output label sequence. The training algorithm consists
of a forward-backward computation in a graph representing
all possible segmentations of the input sequence given the
expected output. Moreover, in the original formulation of CTC,
the RNN has one output for each modeled character, plus
one special non-character label, which we will name blank
label in the remaining of this paper. The association of LSTM-
RNNs and the CTC objective function for training won many
handwriting recognition contests in the last few years (e.g.
OpenHaRT [2], Maurdor [3]). In the cited examples, the RNN
are the optical model of hybrid NN/HMM systems, allowing an
easy integration of lexical constraints (vocabulary and n-gram
language model) in the decoding procedure.

Typical HMM-based recognition methods, including hy-
brid systems, are borrowed from the advances in the speech
recognition community. In these setups, character (or phone)
HMMs consist of several states, and neural networks are
trained on a framewise basis. Usually, a boostrapping system
computes the forced alignments of training sequences, in order
to segment the data and have a label (q) for each input
(x) in the sequence. Then, standard NN training methods
can be employed, such as stochastic gradient descent, and
classification objective functions (e.g. cross-entropy). Hidden
Markov Models training procedures (e.g. the Baum-Welch
algorithm [4]) involve a forward-backward procedure to con-
sider all possible segmentations of the input. Researchers have

investigated forward-backward training of hybrid systems, to
include both the NN and HMM in the training procedure,
and to avoid the need for a bootstrapping system. Most of
this work took place in the nineties [5], [6], [7], and do not
seem to receive much attention nowadays. Forward-backward
procedures are still found in sequence-discriminative training
methods (MMI, MPE, sMBR [8], [9])

This paper is a study of the CTC training algorithm, in
comparison to framewise training methods. First, in Section II,
we show that the equations of CTC are very similar to those of
forward-backward training of neural networks, and we point
out the differences. Section III introduces the experiments
that arise from these observations, namely the particularity
of the structure of the CTC, which corresponds to modeling
characters with a single state, and adding a non-character
model, and the fact that this training algorithm is not limited
to RNNs. In particular, we investigated in Section IV different
topologies (CTC-like and more classical HMM topologies) for
different optical models (GMMs, MLPs, RNNs). We trained
MLPs with CTC, either with the topology defined in the CTC
formulation, or with the best HMM topology. Finally, we
compared, for all these setups, framewise and CTC training.
We show that the CTC training improves the performance of
MLP/HMMs, when used with the classical topology, while the
best RNN results are obtained not only with CTC training, but
also with the CTC topology. We summarize our conclusions
in Section V.

II. RELATION BETWEEN CTC AND
FORWARD-BACKWARD TRAINING OF HYBRID NN/HMMS

Let Qn(W) be the set of all state sequences of length
n representing some word sequence W. For notation con-
venience, we also define Q(W), the list of all states in the
model of W (a sequence of Qn(W) is made of element
of Q(W)). Since in practice the same state can be used
several times (and appear several times in Q(W) (e.g. the
states of the HMM for character “e” appear twice in word
“tee”), we define Q∗ the set of all distinct states, and a
mapping µ : Q(W) 7→ Q∗ which provides the identity
of a considered state. This is needed since HMMs have a
single emission model for elements of Q∗, when the forward-
backward algorithms often consider elements of Q(W).

The basic idea of forward-backward training of neural
networks is to use the scaled neural network posterior in the

HMM formulation:

p(x|W) =
∑

q∈Q|x|(W)

π(q1)
p(q1|x1)
p(q1)

|x|∏
t=2

p(qt|xt)
p(qt)

p(qt|qt−1)

(1)
and to apply the same forward-backward procedure in the
HMM as for Baum-Welch training, with forward and backward
variables:

αt(s) = p(x1:t, qt = s|W)

βt(s) = p(xt+1:T |qt = s,W)

where s ∈ Q(W). These variables are computed iteratively,
and the following recurrence equations apply with the neural
network posteriors:

αt(s) =
p(qt = s|xt)

p(s)
×
∑
r

αt−1(r)p(qt = s|qt−1 = r) (2)

βt(s) =
∑
r

p(qt+1 = r|xt+1)

p(r)
p(qt+1 = r|qt = s)βt+1(r) (3)

Since p(q|x)
p(q) = p(x|q)

p(x) , this forward-backward procedure
actually computes

p(x|W)∏|x|
t=1 p(xt)

=
p(x|W)

p(x)
=

∑
s∈Q(W)

αt(s)βt(s) (4)

and we can derive the state posteriors given the word sequence
W:

p(qt = s ∈ Q(W)|x,W) =
αt(s)βt(s)∑
r αt(r)βt(r)

Summing over all occurrences of a given state in the word
sequence HMM, we get the posterior probability of a state
given the observation and HMM:

p(qt = k ∈ Q∗|x,W) =
∑

s:µ(s)=k

p(qt = s|x,W) (5)

At every time t, the neural network computes a posterior
distribution over elements of Q∗, and thus we can use the
distribution computed with Eqn. 5 as the target distribution in
the cross-entropy training criterion. The backpropagated error
is

∂E

∂atk
= ytk − p(qt = k ∈ Q∗|x,W) (6)

= ytk −
∑

s:µ(s)=k

αt(s)βt(s)∑
r αt(r)βt(r)

(7)

where ytk is the output of the neural network at time t for
class k, i.e. p(qt = k|xt), and atk are the activations before the
softmax.

Several papers about forward-backward training of neural
networks were published. The idea is to replace the “hard”
Viterbi segmentation of the input sequence, where the classi-
fication targets are HMM states, by considering all possible
segmentations, as in the Baum-Welch algorithm for HMMs.
In some works, such as [6], [7], it is assumed that p(q|x)

p(q) ≈
p(x|q), so Eqns. 1 and 4 both compute p(x|W). The “soft”
targets are obtained with Eqn. 5.

In [5], the same recurrences on α and β compute p(x|W)
p(x) ,

and posteriors are again obtained with Eqn. 5. The original
goal of that work was to optimize directly p(W|x), in which
we are interested for decoding. Some assumptions, such as the
usual limitation of the dependency of the HMM state qt to the
current observation (or some local context) given the previous
state (p(qt|x, qt−1) = p(qt|xt, qt−1)) leads to the REMAP
formulation and special kind of neural network [10]. When
furthermore the dependency on the previous state is dropped,
given the current observation, we obtain the equations from [5].

In these works, the networks are first trained with
Viterbi alignments. Then, the targets are re-estimated with
the forward-backward procedure, and the network is trained
with the obtained posterior probabilities. We can show (simple
derivation of the expressions of the posteriors in terms of α and
β) that when the cross-entropy is the optimized criterion, and
the re-estimation is made after each batch (epoch or training
example), the method of [6], [7] is equivalent to training the
network with the observation negative log-likelihood (NLL)
(− log p(x|W)), while in [5], the NLL of the word sequences
is minimized (− log p(W|x)), provided that the prior dis-
tribution of word sequences (language model) is considered
constant.

The goal of CTC [1] is to use a neural network to transform
an input sequence x into a (shorter) output sequence of labels
L (e.g. a sequence of characters) using the NN predictions
with no complicated post-processing. The proposed method
defines the NN outputs to be the set of possible labels, plus
a blank output (�). This way, a mapping transforms sequence
of predictions into the final transcriptions by first removing
successive identical labels, and then blanks, for example:

a a�� b b� b a 7→ abba

One of the motivations for the special blank label is to be
able to use this simple mapping function and still output two
identical labels in the output sequence [1]. The authors also
suggest that this label should model everything outside the
relevant parts of the input sequences, such as the connections
or short wihtespaces between characters in an image. A blank
prediction is only mandatory between two consecutive and
identical labels.

With this labeling problem at hand, the NN is trained
to minimize the NLL of the label sequence given the input
sequence (− log p(L|x)). Several prediction sequences yield
the same label sequence (e.g. “a a b b”, “a a a b”, “a�b b”, ...).
To simplify the analogy with the methods presented previously,
let Qn(L) be the set of all output sequences mapping to L.
Then:

p(L|x) =
∑

q∈Q|x|(L)

p(q|x)

In [1], the authors assume that the predictions made at
different timesteps are independent given the observation se-
quence, hence:

p(L|x) =
∑

q∈Q|x|(L)

|x|∏
t=1

p(qt|x)

This quantity can also be efficiently computed with a forward-
backward procedure. The mapping defines the allowed transi-
tions between labels: either continue to predict the same label,
jump to the next one if it is different, or jump to a blank. The
forward and backward variables are defined as follows, with
L = l1 . . . ln and L′ = l′1 . . . l

′
n = �l1 � . . .� ln�

αt(l
′
s) = p(q1:t ∈ Qt(L1:s/2), qt = l′s|x)

βt(l
′
s) = p(qt+1:T ∈ QT−t(Ls/2+1:|L|), qt = l′s|x)

and the recurrences are:

αt(l
′
s) = p(qt = l′s|x)

k∑
n=0

αt−1(l
′
s−n)

βt(l
′
s) =

k∑
n=0

p(qt+1 = l′s+n|x)βt+1(l
′
s+n)

where k = 1 whenever l′s = � or l′s = l′s−2 (resp. l′s = l′s+2)
for forward (resp. backward) variables, and 2 otherwise. Again,
the network targets are given by Eqn. 5.

The equations are close from the ones of forward-backward
training of hybrid NN/HMM models, such as those of [5]. We
had to introduce some notation to take into account the allowed
transitions, but there are mainly only two differences. First, the
CTC uses p(qt|x) instead of p(qt|xt), because the CTC appear
in the context of RNNs, which make predictions potentially
based on the whole sequence. If we make the assumption
from [5] that the output only depends on some local context,
the CTC is not anymore limited to RNNs, and may be applied
to any neural network.

The second difference is that CTC does not take into
account the transition probabilities, and setting p(r|s)

p(r) = 1
when a transition from s to r exists and 0 otherwise in
Eqns. 2 and 3, we obtain the CTC equations. Thus, CTC is
(i) a simplification of the forward-backward training of hybrid
NN/HMMs and (ii) associated with a simple topology where
each character is modeled with a single state, plus an optional
state between characters.

III. EXPERIMENTAL SETUP

Is the CTC topology better than another one for CTC
training of RNNs? The transition model in the CTC is prin-
cipally designed so that the neural network can be used alone
to predict the desired output outside the HMM framework.
In practice, however, the HMM framework is convenient, in
particular for the integration of the language model. We have
included CTC trained RNNs in hybrid NN/HMM handwriting
recognition systems and obtained good results with language
models (e.g. in [2], [3], [11]). The HMMs were designed to
match the CTC topology: one state for every character, plus
an optional state for blanks, with self-loops. We also found
that the inclusion of state (label) priors as in standard hybrids
gives better results. In this framework, the CTC topology is not
required. In the first set of experiments, we varied the number
of states in CTC training of RNNs, with number of states per
character ranging from one to seven.

Is the blank label useful for handwriting modeling? When
and why is it useful? The remaining motivation for a blank
symbol when we remove the need for a standalone neural

network is the modeling of the inter-character signal. We
tried the previous topologies with the different optical models
(GMM, MLP, RNN), with and without the blank symbol.

We have seen that CTC training is close to forward-
backward training of hybrid NN/HMM, which is not limited to
the CTC topology. Thus, it can apply to other neural networks,
such as MLPs. We complemented the previous experiments
with CTC training of MLPs, and with framewise training of
RNNs, for all variations of the topologies. The goal is to better
answer the previous questions to understand the relationship
between the topology, the blank symbol, and the CTC training
algorithm, and to compare these different training methods.

The experiments are carried out on the public IAM
database [12] of handwritten English text lines. The database
consists of 747 documents (6,482 text lines) for training,
116 (976) for development and 336 (2,915) for test. The
writers only contributed to one set. For all experiments, we
preprocessed the image by applying skew and slant correction,
contrast enhancement, and rescaling the images to a height
of 72px (24px for each zone: ascenders, core, descenders).
We scanned a sliding window of width 3px to the obtained
image to extract 56 geometrical and statistical features [13].
The average number of frames per character is about 10. For
decoding, we used a trigram language model, trained on the
LOB, Wellington and Brown corpora, and limited to the most
frequent 50k words. We report results on the development set,
for which the language model has an out-of-vocabulary word
rate of 4.3% and a perplexity of 298.

The training of GMMs follows the standard EM procedure,
realigning the data with the Viterbi algorithm and updating
the mixtures to maximize the data likelihood, increasing the
number of Gaussians at each step, until no more improvement
is observed on the validation data. We chose neural network ar-
chitectures to be a tradeoff between model size (training time)
and performance. The MLPs have two hidden layers of 1,024
sigmoid units, and with inputs consisting of 11 consecutive
frames of 56-dimensional feature vectors to take into account
the context (this number has been tuned empirically, and we
selected the one yielding the lowest classification error on
the validation set). The RNNs have two LSTM hidden layers
with 100 units (one for each direction), and directly consider
the sequence of feature vectors. In framewise training, the
optimized criterion is the NLL at frame level. Training stops
when the cost on the validation data does not decrease for 20
epochs, and the best network is selected.

IV. EXPERIMENTS AND RESULTS

A. Topology and Blank

First, we trained standard GMM/HMMs systems. Each
state has its own emission probability distribution, hence its
own set of parameters. We wanted to confirm that several states
per character are better than one or two, and to check whether
a blank model to take care of the inter-character parts could
help. The results are shown on the top part of Table I. We
see that adding states improves the results. We also notice by
comparing the two lines that adding a blank model between
characters helps too. However, we always got better results
by incrementing the character model sizes than by inserting
blanks between characters.

TABLE I: WER% (CER%) of different standard systems with
different topologies.

States 1 2 3 4 5 6 7
GMM
No blank 25.7 (15.5) 20.8 (10.7) 17.3 (8.2) 16.7 (7.7) 16.5 (7.4) 16.3 (6.9)

Blank 30.1 (18.0) 23.5 (12.6) 18.3 (8.7) 17.1 (7.7) 17.3 (7.4) 17.0 (7.4) 18.7 (8.6)
MLP
No blank 17.8 (8.2) 15.0 (6.1) 13.6 (5.3) 13.2 (4.8) 12.4 (4.6) 14.8 (4.8)

Blank 19.6 (9.0) 16.0 (6.3) 14.4 (5.5) 14.1 (5.2) 13.9 (5.2) 14.3 (5.9) 16.0 (6.7)
RNN
No blank 19.3 (8.0) 16.5 (6.1) 14.1 (5.3) 13.7 (5.0) 14.1 (4.9) 14.5 (5.1)

Blank 13.1 (4.9) 13.9 (5.0) 14.3 (5.2) 13.9 (5.1) 14.9 (5.4) 15.3 (5.8) 14.2 (5.4)

The MLPs were trained with the framewise NLL criterion,
which focuses on the classification of individual frames. The
ground-truth targets are obtained by forced alignment of the
training data with a bootstrapping system (the corresponding
GMM system). The results are presented in the middle part
of Table I. Apart from the well-known huge improvements
brought by these discriminative models over the generative
GMMs, we draw the same conclusions concerning the number
of states: adding states in the character models improves
the results. The blank model, however, only helps when the
character models are small.

The RNNs were trained with the CTC criterion, but without
the CTC constraints of one output per character and blank.
Since we use RNNs in hybrid mode with HMMs, the outputs
are the different HMM states, as for MLPs. So we apply CTC
with the transition model defined by the HMMs. The results
are presented in the bottom part of Table I. Without blank,
increasing the number of states still improves the performance.
As for MLPs, adding a blank only helps when characters are
modeled with a few states.

However, there is one noticeable difference with MLP
results: for RNNs with the blank symbol, adding states to
the character models leads to worse results. For the previous
models, the CTC topology gave the worst results, but for CTC-
trained RNNs, it looks like this topology is the best choice. A
reasonable question to ask at this point is whether it is due to
the CTC training or to the RNN, or maybe a combination
of both. The next two sets of experiments (Section IV-B
and IV-C) attempt to answer it.

B. CTC Training of MLPs

The CTC training criterion was proposed in the context
of RNNs. The only part of the equations that makes it
particularly suited to RNNs is the representation of NN outputs
as p(qt|x), meaning that the prediction depends on the whole
input sequence. The limitation disappears when we assume as
in [5] that a state label only depends on some local context.
The algorithm is then applicable to any model of p(qt|xt).
Moreover, we outlined in Section II the resemblance of the
CTC criterion to the forward-backward training of hybrid
NN/HMMs, and like we did for the last RNN experiments,
we can apply the CTC criterion to MLP, with the best HMM
topology (6 states/character, no blank symbol).

The results are presented on Table II, and compared to the
best MLP trained with a framewise criterion. With the 6-state
topology without blank (“HMM” topology), we observe some
limited improvement, from 4.6% CER to 4.3%. On the other

TABLE II: CTC training of MLPs.

Training Topology WER% CER%
Framewise HMM 12.4 4.6
CTC HMM 12.6 4.3

CTC 17.6 7.4

hand, with the classical CTC topology, consisting of one state
per character and a blank model, the results are far worse. This
choice of topology, which was the best one for CTC training of
RNNs, is not suited to MLPs, even with CTC training. Note
however that CTC training still improved the error rates for
this topology over framewise training (19.6% WER / 9.0%
CER in Table I). In the next experiment, we conduct a more
thorough comparison of framewise and CTC training, with
different topologies, for MLPs and RNNs.

C. Framewise vs CTC Training

In this section, we compare the results of framewise and
CTC (forward-backward) training of neural networks. For each
topology (1 to 7 states, with and without blank), we trained
MLPs and RNNs. The results are summarized on Table III, and
in Fig. 1. With blank, CTC training gives better results than
framewise training when characters are represented by a few
states (one or two). With more states, there was only small
differences for RNNs, but the results tend to be worse with
CTC for MLPs. We make the opposite observation without
blank: for MLPs and RNNs, the results are improved with
CTC training when there are many states per characters, but
degraded for one or two states.

TABLE III: WER%/CER% with framewise vs CTC training.

Without blank With blank
States Framewise CTC Framewise CTC

MLP 1 - - 19.6 / 9.0 17.6 / 7.4
2 17.8 / 8.2 19.1 / 8.5 16.0 / 6.3 16.4 / 6.7
3 15.0 / 6.1 15.2 / 6.1 14.4 / 5.5 16.4 / 6.5
4 13.6 / 5.3 13.3 / 4.9 14.1 / 5.2 14.9 / 5.6
5 13.2 / 4.8 13.0 / 4.5 13.9 / 5.2 14.9 / 5.6
6 12.4 / 4.6 12.6 / 4.3 14.3 / 5.9 16.1 / 6.4
7 12.8 / 4.8 12.7 / 4.3 16.0 / 6.7 17.4 / 7.0

RNN 1 - - 18.7 / 8.2 13.1 / 4.9
2 17.7 / 7.5 19.3 / 8.0 15.9 / 6.1 13.9 / 5.0
3 15.4 / 5.6 16.5 / 6.1 14.4 / 5.8 14.3 / 5.2
4 14.2 / 5.4 14.1 / 5.3 13.8 / 5.3 13.9 / 5.1
5 14.2 / 5.1 13.7 / 5.0 14.3 / 5.2 14.2 / 5.1
6 14.0 / 5.1 14.1 / 4.9 14.6 / 5.8 15.3 / 5.8
7 14.6 / 5.2 14.5 / 5.1 15.7 / 6.4 14.2 / 5.4

Moreover, CTC training without blank and with less than
5 states per character converged to a poor local optimum, for
both neural networks, where most of the outputs are whitespace
predictions. The training algorithm did not manage to find a
reasonable alignment, and the resulting WERs / CERs were
above 90%. To obtain the presented results, we had to initialize
the networks with one epoch of framewise training. This
problem did not occur when a blank was added, suggesting
that this symbol plays a role in the success in the alignment
procedure in early stages of CTC training.

D. The Role of the Blank Symbol

The blank symbol helps only when characters are modeled
with a few states. It is especially useful for CTC training in that

Fig. 1: Character Error Rates with different Neural Networks,
training methods, and HMM topologies.

context, where it is crucial for convergence. It is particularly
good for RNNs: the best results are obtained with one state
per character, CTC training, and blanks.

Why does it help? A typical observation in CTC-trained
RNNs is the dominance of blank predictions in the output
sequence, with localized peaks for character predictions. In-
terestingly, this behaviour still occurs with more states (e.g.
with four states: four peaks of states predictions with many
blanks between each character), and with MLPs. Thus, we
can conclude that this typical output is due to the interaction
between blank and CTC training more than to character models
or RNNs. This is not surprising. In the CTC graph, there is
one blank between each character. In early stages of training,
the NN outputs are more or less random. Any path is equally
likely, but summing all blank posteriors for a given timestep,
the target for blank with be much higher than for any other
label. We indeed observe that the network start predicting
only blanks. But predicting only blanks penalizes a lot the
cost function and the network has only to find one location
where to predict each character, to “jump” from one sequence
of blanks to another. This is much easier for RNNs, which
can use a context of arbitrary length to make a prediction at
a specific timestep, and not use much of the input to make
blank prediction. Conversely, all predictions in MLPs must be
made from an arbitrary context, and it is much more difficult
to only predict blanks except at specific timesteps.

Moreover, it looks like having this uninformative symbol
between every character helps the network to reach good align-
ments in the CTC algorithm and to converge to good solutions.
Without blank, the predominant symbol is the whitespace, and
systems with few states converged to solutions where character
predictions are made at the beginning and end of the sentence,
the rest being overwhelmed by whitespace predictions. These
observations also explain why the blank in CTC helps only
with a few states per character. Indeed, the more states, the
more successive peaks with a different label the network must
predict, i.e. different labels for probably similar inputs.

Finally, this behaviour is also interesting for decoding.
Models with one state and a blank yield much smaller decoding
graphs. Furthermore, since the character predictions are very
localized, and the blank is uninformative and shared by all
word models, the number of predictions to change in order to
recognize a different word is small. It means that correcting
mistakes is not very costly. That also means that it is easier to
keep more various hypotheses during beam search decoding.
We observed that the optimal optical scale in decoding is

related to the length of the characters (in the sequence of
predictions). Without blank, there are roughly between 10 and
15 frames per characters in this database, and the best optical
scale is always between 10−1 and 15−1. With CTC training
and blank, the predictions are localized and correspond to 1 or
2 timesteps (with one-state models, and around N timesteps for
N -state ones), and the optimal optical scale is always around
N−1.

V. CONCLUSIONS

In this paper, we have studied the CTC framework for
RNNs and MLPs, varying the output model. We have shown
that CTC was quite similar to forward-backward training of
hybrid NN/HMM systems. Through experiments, we observed
that the original CTC formulation, with one output per char-
acter, and a special blank symbol, is especially suited to RNN
optical models.

REFERENCES

[1] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international
conference on Machine learning. ACM, 2006, pp. 369–376.

[2] T. Bluche, J. Louradour, M. Knibbe, B. Moysset, M. F. Benzeghiba, and
C. Kermorvant, “The a2ia arabic handwritten text recognition system
at the open hart2013 evaluation,” in Document Analysis Systems (DAS),
2014 11th IAPR International Workshop on. IEEE, 2014, pp. 161–165.

[3] B. Moysset, T. Bluche, M. Knibbe, M. Benzeghiba, R. Messina,
J. Louradour, and C. Kermorvant, “The a2ia multi-lingual text recogni-
tion system at the maurdor evaluation,” in 14th International Conference
on Frontiers in Handwriting Recognition (ICFHR-2014), 2014.

[4] L. Rabiner, “A tutorial on hidden markov models and selected applica-
tions in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp. 257–286, 1989.

[5] J. Hennebert, C. Ris, H. Bourlard, S. Renals, and N. Morgan, “Esti-
mation of global posteriors and forward-backward training of hybrid
hmm/ann systems.” 1997.

[6] A. Senior and T. Robinson, “Forward-backward retraining of recurrent
neural networks.” Advances in Neural Information Processing Systems,
pp. 743–749, 1996.

[7] Y. Yan, M. Fanty, and R. Cole, “Speech recognition using neural net-
works with forward-backward probability generated targets,” in Acous-
tics, Speech, and Signal Processing, IEEE International Conference on,
vol. 4. IEEE Computer Society, 1997, pp. 3241–3241.

[8] B. Kingsbury, “Lattice-based optimization of sequence classification
criteria for neural-network acoustic modeling,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, 2009. ICASSP
2009. IEEE, 2009, pp. 3761–3764.

[9] K. Veselý, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks,” in Interspeech, no. 1,
2013, pp. 3–7.

[10] Y. Konig, H. Bourlard, and N. Morgan, “Remap: Recursive estimation
and maximization of a posteriori probabilities-application to transition-
based connectionist speech recognition,” Advances in Neural Informa-
tion Processing Systems, pp. 388–394, 1996.

[11] V. Pham, C. Kermorvant, and J. Louradour, “Dropout improves
Recurrent Neural Networks for Handwriting Recognition,” Nov. 2013.
[Online]. Available: http://arxiv.org/abs/1312.4569

[12] U. V. Marti and H. Bunke, “The IAM-database: an English sentence
database for offline handwriting recognition,” International Journal on
Document Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2002.

[13] A.-L. Bianne, F. Menasri, R. Al-Hajj, C. Mokbel, C. Kermorvant, and
L. Likforman-Sulem, “Dynamic and Contextual Information in HMM
modeling for Handwriting Recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 10, pp. 2066 – 2080,
2011.

