
End-to-End
Handwritten Paragraph

Recognition
Théodore Bluche

theodore.bluche@gmail.com
Google Zurich - 2 Feb. 2017

mailto:theodore.bluche@gmail.com
mailto:theodore.bluche@gmail.com
mailto:theodore.bluche@gmail.com
mailto:theodore.bluche@gmail.com

Offline Handwriting Recognition

➔ Challenges
○ the input is a variable-sized two-dimensional image
○ the output is a variable-sized sequence of characters
○ the cursive nature of handwriting makes a prior segmentation into characters difficult

➔ Methods
○ Over-segmentation and group-of-segments scoring (90s)
○ Sliding window approach with HMMs (2000s) or neural nets (2000-2010s)
○ MDLSTM = models handling both the 2D aspect of the input and the sequential aspect

of the prediction → state-of-the-art

“Look!” he went on earnestly. “You’re not…
to write up Pericles in some way or other…
you?” “What is there to write up?” said
Bawley. “There are forty-three submarines..
the Navy - why should I pick on Pericles?”
John eyed him steadily. “It’s the Principal
business, isn’t it?” he said quietly.Li

ne
 (o

r W
or

d)
Se

gm
en

ta
tio

n

Te
xt

 R
ec

og
ni

tio
n

La
ng

ua
ge

 M
od

el

Limitations
➔ Current systems require segmented text lines

○ For training = tedious annotation effort or error-prone automatic mapping methods
○ For decoding = need to provide text line images which rarely are the actual input of a

production system

➔ Document processing pipelines rely on automatic line segmentation
algorithms

➔ How to process full pages without requiring an explicit line
segmentation?

"We believe that the use of selective attention is a
correct approach for connected character

recognition of cursive handwriting."

—Fukushima et al. 1993

2014-2015 trends

Talk Overview
➔ Introduction

➔ Handwriting Recognition with Multi-Dimensional LSTM networks

➔ Limitations → Motivations of the proposed approach

➔ Learning Reading Order - Character-wise Attention

➔ Implicit Line Segmentation - Speeding Up Paragraph Recognition

➔ Conclusion

Handwriting Recognition with
Multi-Dimensional LSTM networks

Handwriting Recognition with MDLSTM

Multi-Dimensional Recurrent Neural Networks
= recurrence in 2D

= 4 possible scanning directions

In MDLSTM, 2 forget gates and
2 recurrent weight matrices

Connectionist Temporal Classification (CTC)
→ The network outputs characters
→ Problem T items in the output sequence, N items in the target char sequence
→ Make sure that T > N and define a simple mapping of sequences that removes
duplicates:

→ Computed efficiently with dynamic programing
→ Problem how to output ABB (AAABBBBBB → AB) ?

AAABBCCCC → ABC
ABBBBBCCC → ABC

...
AAAABCCCC → ABC

= Net’s output at time t

Connectionist Temporal Classification (CTC)
→ Problem how to output ABB (AAABBBBBB → AB) ?
→ The network outputs characters + a special NULL (or blank; non-char) symbol -
→ The mapping removes duplicates, and then NULLs

AAABBCCCC → ABC
AA-BB--C- → A-B-C- → ABC

...
-A--B--C- → -A-B-C- → ABC

AAABBBBBB → AB
AA-BB--B- → A-B-B- → ABB

...
-A--B--B- → -A-B-B- → ABB

The “Collapse” layer

- 2D → 1D conversion
- Simple sum across vertical dimension
- Feature maps of height 1 interpreted as a sequence

Limitations → Motivations of the
proposed approach

The “Collapse” layer

1. all the feature vectors in the same column j are given the same
importance

2. the same error is backpropagated in a given column j

→ Prevents the recognition of several text lines

Side effects

Proposed modification

➔ Augment the collapse layer with an “attention”
module, which can learn to focus on specific
locations in the feature maps

➔ Attention on characters or text lines
➔ Takes the form of a neural network, which, applied

several times can sequentially transcribe a whole
paragraph

Weighted Summary:
predict one character at a time

This is the "Scan, Attend and Read" model.

Weighted Collapse
recognize one line at a time

This is the "Joint Line Segmentation and Transcription" model.

Proposed modifications

Learning Reading Order
 Character-wise Attention

“Scan, Attend and Read”

Network’s architecture
➔ Encoder

➔ Attention

➔ State

➔ Decoder

The attention mechanism
➔ The attention mechanism provides a summary of the encoded

image at each timestep

➔ The attention network computes a score for the feature vectors at
each position. The scores are normalized with a softmax.

Model Training

➔ We include a special token EOS at the end of the target sequences
(also predicted by the network to indicate when to stop reading at test time)

➔ The net has to predict the correct character at each timestep

Text Lines

Learning Line Breaks

Paragraph Recognition

Training tricks
In order to get the model to converge, or to converge faster, a few tricks helped:

● Pretraining use an MDLSTM network (no attention) trained on single lines with
CTC as a pretrained encoder

● Data augmentation add to the training set all possible sub-paragraphs (i.e. one,
two, three, ... consecutive lines)

● Curriculum (0/2) training the attention model on word images or single line
images works quite well, do this as a first step

● Curriculum (1/2) (Louradour et al., 2014) draw short paragraphs (1 or 2 lines) samples
with higher probability at the beginning of training

● Curriculum (2/2): incremental learning. Run the attention model on the paragraph
images N times (e.g. 30 times) during the first epoch, and train to output the first N
characters (don't add EOS here). Then, in the second epoch, train on the first 2N
characters, etc.

● Truncated BPTT to avoid memory issues

http://www.tbluche.com/scan_attend_read.html#louradour

Results (Character Error Rate / IAM)

Encoder’s Activations

Pros & Cons

➔ Can potentially handle any reading order
➔ Can output character sequences of any length
➔ Can recognize paragraphs (and maybe complete

document?)
➔ Very slow + Requires a lot of memory during training
➔ Not quite close to state-of-the-art performance on

paragraphs (for now...)

Implicit Line Segmentation
 Speeding Up Paragraph Recognition

Joint Line Segmentation and Transcription
➔ The previous model is too slow

and time consuming

➔ Because of one costly
operation for each character

➔ Idea of this model : one
timestep per line

i.e. put attention on text lines
= reduced from 500+ to ~10
timesteps

Network’s architecture
➔ Similar Architecture

(encoder, attention, decoder)

➔ Modified attention to output full lines :
softmax on lines + collapse

➔ No “state”

➔ BLSTM decoder that can model linguistic
dependencies across text lines

Training
➔ In this model we have more predictions than characters ⇒ CTC
➔ If the line breaks are known → CTC on each segment (attention step)
➔ Otherwise → CTC at the paragraph level
➔ Less tricks required to train

(only pretraining and 1 epoch on two-line inputs)

Qualitative Results

Comparison with Explicit Line Segmentation
➔ Because of segmentation errors, CERs increase with automatic

(explicit) line segmentation

➔ With the proposed model, they are even lower than when using
ground-truth positions …

Comparison with Explicit Line Segmentation

➔ … partly because the BLSTM decoder can model dependencies across
text lines

BLSTM after collapse but limited to textlines

BLSTM after attention on full paragraphs

Processing Times
➔ On average, the first method (Scan, Attend and Read) is

○ 100x slower than recognition from known text lines
○ 30x slower than a standard segment+reco pipeline

➔ The second method is
○ 30-40x faster than the first one (expected from fewer attention steps)
○ about the same speed as a standard segment+reco pipeline

Final Results

NIPS Paper

Latest result 7.9 2.2 10.1 3.3

Pros & Cons

➔ Much faster than "Scan, Attend and Read"
➔ Easier paragraph training
➔ Results are competitive with state-of-the-art models
➔ The attention spans the whole image width, so the method

is limited to paragraphs (not full, complex, documents)
➔ The reading order is not learnt

Conclusions

Conclusions & Challenges
➔ Inspired from recent advances in deep learning
➔ Attention-based model for end-to-end paragraph recognition
➔ A model that can learn reading order (but difficult to train)
➔ A faster model that implicitly performs line segmentation
➔ Could be trained with limited data (only Rimes or IAM…)

Challenges:

➔ How to define attention to smaller blocks to recognize full, complex
documents?

➔ How do we get training data / evaluation in that context?
➔ How to make the models faster / more efficient?

Thanks!
Questions /Discussion

Theodore Bluche

“Scan, Attend and Read”

Frame classification (MLP style)
➔ Input = one frame = one vector of pixel or feature values
➔ Output = posterior probabilities over HMM states (or sometimes

characters)

Training :

➔ Collect a dataset of (xt, qt) = frames with correct HMM state
➔ Minimize - log p(qt | xt)
➔ Measure the Frame Error Rate (% of frames with wrong HMM state prediction)

46

Sequence classification
➔ To train the network directly with frame sequences and character

sequences
➔ i.e. no need to label each frame with an HMM state

Minimize :

-log p (c1, c2, … cN | x = x1, x2, … xT)

➔ Measure the Character Error Rate (% of character substitutions, deletions or
insertions)

Sequence sizes are not equal !!!

47

Neural Networks for Images (pixel level)

→ Instead of a feature vector, the input is only one pixel
value (or a vector of 3 RGB values for color images)

→ The network is replicated at each position in the image

48

Feature Maps

→ The outputs of one hidden layer for a pixel may be viewed as
new “pixel” values, defining new channels

→ Since the network is replicated, each output have a similar
meaning across all pixels (but different values)

→ So a given output across the whole image defines a new (kind
of) image : a feature map

in the end, it’s just a way of representing or interpreting the net…

49

e.g. Convolutional Neural Network
→ We can include spatial (structured) context :

instead of giving 1 pixel value at the current position, we give
the values of all pixels in a given neighborhood

→ This is still replicated at all positions = convolution,
with kernel defined by the weights

→ You can reduce the size of the feature maps by replicating
the net every N positions (output will be N times smaller)

(nb: also possible to have convolution in sequential nets…)

50

What happens in the net? (bottom)
51

MDLSTM (4 directions)

Convolutions

Sum + tanh

Simple features
(like oriented edges, …)

What happens in the net? (middle)
52

Complex features
(like loops, ascenders,

vertical strokes, …)

MDLSTM (4 directions)

Convolutions

Sum + tanh

What happens in the net? (top)
53

More abstract features
(combination of features,

closer to character level…)

MDLSTM (4 directions)

Collapse

Softmax

Results (Character Error Rate / IAM)

Encoder’s Activations

Comparison with Explicit Line Segmentation

➔ … partly because the BLSTM decoder can model dependencies across
text lines

BLSTM after collapse but limited to textlines

BLSTM after attention on full paragraphs

In the literature of …
Computer Vision

[CONV.NET]

Image input

NLP

Language Predictions

[1D-LSTM]

Model Compression

- Pruning
- 20x smaller models
- But start with huge

models >50MB

- Weight Quantization

Proposed model
➔ Connected with any kind of vertical

aggregation (max pooling,
collapse, attention, …)

➔ We can make the convnet a
generic multi-task, multi-language
encoder (e.g. use it to predict the
language in order to select the
appropriate LSTM model, and to
provide inputs to this LSTM)

[CONV.NET]

Image input

Language Predictions

[1D-LSTM]

Gates
- Conv 3x3 with appropriate padding and stride 1
- Sigmoid
- Ouput = Result x Input

Gated NN archi.

Tiling 2x2

Conv 3x3 + tanh

Conv 2x4 (2x4) + tanh

Conv 3x3 + sigm

Conv 3x3 + tanh

Conv 3x3 + sigm

Conv 2x4 (2x4) + tanh

Conv 3x3 + sigm

Conv 3x3 + tanh

Maxpooling 1xH

LSTM 1D

Linear + tanh

LSTM 1D

Linear

Softmax

Many tested, this one works quite well
(at least for HWR…)

- Most (~80%) of the parameters after
the max-pooling

- Most (~80%) of the processing time in
the convolution

