
Connectionist Temporal
Classification (CTC) and

Hybrid NN/HMMs
Théodore Bluche

tb@a2ia.com

RWTH - i6, Aachen August 14, 2014

Outline
❖ Hybrid NN/HMM

➢ Forward-Backward Training (Hennebert et al., 1997)
➢ RNNs and CTC (Graves et al., 2006)
➢ CTC and HMMs

❖ Experiments around the CTC for Hybrid NN/HMM
➢ “HMM” topology
➢ Optical model
➢ Blank symbol

❖ Conclusions and Future Work

Neural Networks for Hybrid NN/HMM
D

e
e

p
 M

LP
LS

T
M

-R
N

N

Training criteria / Targets

Framewise

Sequence-discriminative (MPE, sMBR)
HMM states

Framewise HMM states

CTC Characters (+ blank)

NN training, Hyb. NN/HMM decoding

Training

Decoding

The network outputs state probability given
input

The training set can be obtained e.g. from forced
alignments (Viterbi)

Outputs are transformed into
pseudo-likelihoods so that the
network can replace the GMM
emission model in HMMs

Forward-Backward NN training

Hennebert, J., Ris, C., Bourlard, H., Renals, S., & Morgan, N. (1997). Estimation of global posteriors and
forward-backward training of hybrid HMM/ANN systems.

replace a cross-entropy criterion at frame level with one that optimizes the likelihood of
the model given the whole input sequence, which does not require prior segmentation

Goal -

We can use the forward-backward algorithm to estimate state posteriors

Forward-Backward NN training

Hennebert, J., Ris, C., Bourlard, H., Renals, S., & Morgan, N. (1997). Estimation of global posteriors and
forward-backward training of hybrid HMM/ANN systems.

replace a cross-entropy criterion at frame level with one that optimizes the likelihood of
the model given the whole input sequence, which does not require prior segmentation

Goal -

Assumes the model prior is constant (LM).

In the Viterbi approximation, the posteriors are 1 for
states/position in the best alignment, 0 otherwise,
and we get the framewise cross-entropy criterion.

Connectionist Temporal Classification
Goal - label an unsegmented input sequence of length T into a sequence of labels of length L<T

with a neural network, with no post-processing of the outputs (or a trivial one)

– The possible outputs are characters

→ “A B” is a valid labelling. With subunits (like states in HMMs) it would be
more difficult to get “A0 A1 A2 B0 B1 B2” and not “A0 B2 A2 …”

– So the only problem to tackle is L < T :

→ “AAABB → AB” : doesn’t allow to differentiate “AB”, “AAB”, “ABB”, “AABB”, …

→ Add a blank (or no label) output # which should also simplify the problem at
the boundaries, where there is no “correct” labeling
“AAAABBB → AB”, “AA##BB# → AB”, “A#AA#BB → AAB”, …

→ Several output sequences map onto the same labeling

Graves, Alex, et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural
networks." Proceedings of the 23rd international conference on Machine learning. ACM, 2006.

Connectionist Temporal Classification
Goal - label an unsegmented input sequence of length T into a sequence of labels of length L<T

with a neural network, with no post-processing of the outputs (or a trivial one)

Graves, Alex, et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural
networks." Proceedings of the 23rd international conference on Machine learning. ACM, 2006.

CTC training and HMMs

Training

Decoding

Rimes IAM OpenHaRT

RNN alone 28.5% / 6.8% 35.1% / 10.8% 30.3% / 7.3%

 + LM 12.3% / 3.3% 13.6% / 5.1 % 18.0% / 4.7%

The CTC framework and reduce operation allow to label with the RNN
alone ...

… but the results are much better with a vocabulary and LM
V. Pham, T.Bluche, C. Kermorvant, J. Louradour (2014) Dropout improves
recurrent neural networks for handwriting recognition.

We decode the outputs as in standard hybrid NN/HMM,
i.e. with pseudo, likelihoods, HMM and LM

HMM
(removes
duplicates)

Lexicon
(removes blanks)

word : [#] w [#] o [#] r [#] d [#]

1-state models
for all labels incl.
blank
all trans. prob. = .5

Folded in time, the CTC graph resemble the word transition model
described above.

(Hennebert, 1997)

(Graves, 2006)

CTC and HMMs

Since we decode with a HMM and since CTC
training is very similar to forward-backward

training of hybrids, we can question the
aspects of the CTC which are not

theoretically required ...

Blank symbol

Number of states

Optical model

Experimental Setup
➢ IAM training / validation sets (6,500 lines in training, 976 in validation)

➢ 3gram LM trained on LOB+Brown+Wellington corpus

➢ RNN architectures

○ BLSTM-RNNs

○ “smallRNN” : one LSTM layer of 100 units in each direction

○ “bigRNN” : state-of-the-art performing architecture for the baseline
7 hidden layers with decreasing number of units 200 -> 100
Subsampling after the first layer
Training with Dropout and Curriculum training (Pham, 2014), (Louradour, 2014)

Transition model topology
Number of states With blank Without blank

1 11.4% / 4.1% - / -

2 11.8% / 4.0% 16.4% / 6.2%

3 14.2% / 5.2% 14.3% / 5.2%

4 TODO TODO

5 23.0% / 10.2% (*) 14.9% / 5.7%

WER/CER on IAM dev with “bigRNN” architecture, varying the topology
(number of states, blank)

(*) : in the “bigRNN” architecture, there is subsampling, without which the models without blank did not
converge to an acceptable result, but with 5 states and blank, it seems to hurt (see next slide). 4-state models
haven’t been trained yet

Topology -- training issues

Sometimes, you don’t have enough
space for one more state… here 5
states with, …

… and without blank

With Blank

Without Blank

Random init.

Framewise pre-
training

Convergence of the RNN to poor
alignments, especially whithout
blank

Optical model and topology
Everything on this slide is trained framewise (no CTC) : GMM with ML criterion and Viterbi
realignments, DNN with Xent with GMM alignments first, then realignment, RNN with Xent
and DNN alignments

Topology GMM DNN “smallRNN”

1 state + blank 30.1% / 18.0% 19.5% / 9.0% 18.7% / 8.2%

2 states 25.7% / 15.5% 18.0% / 7.6% 17.7% / 7.5%

2 states + blank 23.5% / 12.6% 16.5% / 6.5% 15.9% / 6.1%

3 states 20.8% / 10.7% 14.8% / 5.8% 15.2% / 5.6%

5 states 16.7% / 7.7% 13.4% / 4.8% 14.2% / 5.1%

soon experimented... models with 4 states, missing “with blank” models

Topology and training method
Topology FRAMEWISE CTC (Framewise

init.)
CTC (Random

init.)

1 state + blank 18.7% / 8.2% 13.1% / 4.9% 13.4% / 5.1%

2 states 17.7% / 7.5% 19.3% / 8.0% didn’t converge

2 states + blank 15.9% / 6.1% 13.9% / 5.0% 13.7% / 5.2%

3 states 15.2% / 5.6% 16.5% / 6.1% didn’t converge

5 states 14.2% / 5.1% 13.7% / 5.0% didn’t converge

experiments running as I speak... same experiments with DNNs

WER/CER on IAM dev with “smallRNN” architecture, varying the topology
and the training criterion

What is it with the blank symbol?
– It helps in most of experiments (different optical model, with CTC and framewise

training) … without it, CTC sometimes doesn’t converge to something acceptable
– It sometimes hurts (e.g. with CTC, subsampling and many states)

peaks of predictions

system with blank reaches size limits

alignment issues

Why do we observe peaks?

Trying to output longer predictions
– In training we repeat the labels in the CTC graph (like n

states sharing the same distribution), but we keep one
state per label at validation/decoding time

– The goal is to increase the label (not blank) posterior
probability at any given time

The obtained predictions are indeed longer…

Num. Repeats CTC CTC - CER WER / CER

1 0.1512 9.2% 11.4% / 4.1%

2 0.2466 9.5% 11.5% / 4.2%

3 0.3677 10.4% 12.9% / 4.7%

5 0.9429 30.1% 26.6% / 13.5%

… but the results are not better

Trying to output longer predictions
The predictions are longer but not more helpful for
segmentation or localisation...

Even if the blank’s length decreases
in proportion to label lengths,

 it seems like the RNNs have learnt
precise durations (remember that
there is still only one state in
decoding)

Role of the blank symbol (part 1)
The sharp predictions

– In training, the structure of the CTC gives blank high posterior probabilities (because it is
in many valid paths) and it becomes advantageous regarding the training criterion, to
output long sequences of highly likely blanks
→ So it is the CTC trying to have the network predict peaks, but certainly the properties
of RNNs make that learning possible

– In decoding, the sharper the predictions, the better the results
Certainly because the cost to make an edit is limited to one (of many) timesteps
given that all words will be the same in all “blank” segments
(nb: we use beam search, and it is likely that we keep more alternative in a given beam)

– Note that sharp predictions is not the original purpose of the blank, although it’s
certainly its more important contribution to good results.

By the way… with several states or training with repetitions, when the blank is present in CTC training, the RNN learns to output predictions of exact
duration, and the optimal optical scale is always 1/duration … it’s more or less true also for GMM-HMM (average duration 12 → optical scale 1/12)

Blank and CTC alignment

With blank, I never had problem in CTC

Without blank, it happened that a
suboptimal solution is learnt
(often predict whitespace everywhere but
start/end)

Some solutions which worked:
Framewise initialization
(here with alignment from DNNs, but probably
uniform alignments would do)

Subsampling
(it is more or less like adding states, so be careful,
remember the problem described previously)

Role of the blank symbol (part 2)
Alignment during CTC training

– In training, the structure of the CTC makes blank provide a kind or “soft uniform
segmentation”, which might help the network figure out where to make its predictions

– Without blank, when the input sequences are long and we do not have a prioris about
what the segmentation should look like, we often learn suboptimal
alignments/segmentations

Its described purpose in (Graves, 2006)

– i.e. to separate two consecutive and identical labels, and to model the input between
relevant parts (cores of characters), that is, more or less a garbage label.

Topology FRAMEWISE CTC

2 states - no blank 17.7% / 7.5% 19.3% / 8.0%

2 states + blank 15.9% / 6.1% 13.9% / 5.0%

Conclusions and Future Work

Topology FRAMEWISE CTC

2 states - no blank 17.7% / 7.5% 19.3% / 8.0%

2 states + blank 15.9% / 6.1% 13.9% / 5.0%

Conclusions
– RNNs trained with the CTC structure fit

well in the Hybrid/HMM framework
– CTC is actually a simplification of

hybrids forward-backward training
– The CTC and blank work especially well

together

– The particular 1 state with blank (baseline), with CTC training has numerous advantages

Future Work
– Fill holes in the result tables, in particular for presence of blanks and training criteria
– Train DNNs with the CTC criterion and the different architectures explored in this

presentation (in progress)
– Train NNs with sequence-discriminative criteria (e.g. MMI, MPE). See if the

improvements are goods for RNNs / CTC-trained networks, compared to those
observed for framewise-trained DNN (see paper below for DNNs)

Théodore Bluche, Hermann Ney, Christopher Kermorvant (2014) A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural
Networks Optical Modeling for Handwriting Recognition. In International Conference on Statistical Language and Speech Processing (SLSP).
(accepted)

Thank you!

Théodore Bluche
tb@a2ia.com

